

Lecture Notes in Computer Science 3606
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Victor Malyshkin (Ed.)

Parallel Computing
Technologies

8th International Conference, PaCT 2005
Krasnoyarsk, Russia, September 5-9, 2005
Proceedings

13

Volume Editor

Victor Malyshkin
Russian Academy of Sciences
Institute of Computational Mathematics and Mathematical Geophysics
Supercomputer Software Department
pr. Lavrentiev 6, ICM MG RAS, 630090 Novosibirsk, Russia
E-mail: malysh@ssd.sscc.ru

Library of Congress Control Number: 2005930458

CR Subject Classification (1998): D, F.1-2, C, I.6

ISSN 0302-9743
ISBN-10 3-540-28126-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28126-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11535294 06/3142 5 4 3 2 1 0

Preface

The PaCT 2005 (Parallel Computing Technologies) conference was a four-day
conference held in Krasnoyarsk, September 5–9, 2005. This was the Eighth in-
ternational conference in the PaCT series. The conferences are held in Rus-
sia every odd year. The first conference, PaCT ’91, was held in Novosibirsk
(Academgorodok), September 7 – 11, 1991. The next PaCT conferences were
held in Obninsk (near Moscow), August 30 – September 4, 1993, in St. Peters-
burg, September 12–15, 1995, in Yaroslavl, September, 9–12 1997, in Pushkin
(near St. Petersburg) September, 6–10 1999, in Academgorodok (Novosibirsk),
September 3–7, 2001, and in Nizhni Novgorod, September 15–19, 2003. The
PaCT proceedings are published by Springer in the LNCS series.

PaCT 2005 was jointly organized by the Institute of Computational Mathe-
matics and Mathematical Geophysics of the Russian Academy of Sciences (RAS),
the Institute of Computational Modeling also of the RAS and the State Technical
University of Krasnoyarsk.

The purpose of the conference was to bring together scientists working on
theory, architecture, software, hardware and the solution of large-scale problems
in order to provide integrated discussions on Parallel Computing Technologies.

The conference attracted about 100 participants from around the world. Au-
thors from 20 countries submitted 78 papers. Of those submitted, 38 papers were
selected for the conference as regular ones; there was also 1 invited paper. In
addition there were a number of posters presented. All the papers were interna-
tionally reviewed by at least three referees. The demo session was organized for
the participants.

PaCT 2007 is planned to be held in Irlutsk, near lake Baikal, in September
as usual.

Many thanks to our sponsors: the Russian Academy of Sciences, the Russian
Fund for Basic Research, the Russian State Committee of Higher Education,
and IBM, for their financial support. Organizers highly appreciated the help of
the Association Antenne-Provence (France).

June 2005 Victor Malyshkin

Organization

PaCT 2005 was organized by the Supercomputer Software Department, Institute
of Computational Mathematics and Mathematical Geophysics, Siberian Branch,
Russian Academy of Sciences (SB RAS) in cooperation with the Institute of
Computational Modelling, SB RAS (Krasnoyarsk) and the State Technical Uni-
versity of Krasnoyarsk.

Program Committee

V. Malyshkin Chairman (Russian Academy of Sciences)
F. Arbab (Centre for MCS, The Netherlands)
O. Bandman (Russian Academy of Sciences)
F. Cappello (INRIA, France)
T. Casavant (University of Iowa, USA)
A. Chambarel (University of Avignon, France)
P. Degano (State University of Pisa, Italy)
D. Etiemble (Université Paris Sud, Orsay, France)
B. Goossens (University of Perpignan, France)
S. Gorlatch (University of Muenster, Germany)
A. Hurson (Pennsylvania State University, USA)
Yu. Karpov (St.-Petersburg State Technical University,

Russia)
B. Lecussan (State University of Toulouse, France)
J. Li (University of Tsukuba, Japan)
T. Ludwig (Ruprecht-Karls-Universität Heidelberg,

Germany)
G. Mauri (University of Milan, Italy)
G. Papadopoulos (University of Cyprus, Cyprus)
M. Raynal (IRISA, Rennes, France)
B. Roux (L3M, France)
V. Shaidurov (Russian Academy of Sciences)
G. Silberman (IBM, USA)
P. Sloot (University of Amsterdam. The Netherlands)
C. Trinitis (LRR, Munich, Germany)
M. Valero (Universitat Politècnica de Catalunya, Spain)
V. Vshivkov (Russian Academy of Sciences)

VIII Organization

Organizing Committee

V. Malyshkin Co-chairman (Novosibirsk)
V. Shaidurov Co-chairman (Krasnoyarsk)
S. Achasova Secretary (Novosibirsk)
O. Bandman Publication Chair (Novosibirsk)
S. Isaev Member (Krasnoyarsk)
F. Kazakov Member (Krasnoyarsk)
N. Kuchin Member (Novosibirsk)
A. Legalov Member (Krasnoyarsk)
A. Malyshev Member (Krasnoyarsk)
Yu. Medvedev Member (Novosibirsk)
S. Nechaev Member (Novosibirsk)
O. Nechaeva Member (Novosibirsk)
G. Sadovskaya Member (Krasnoyarsk)
E. Veysov Member (Krasnoyarsk)

Referees

G. Acher A. Glebovsky G. Papodopoulos
M. Alt B. Goossens M. Raynal
F. Arbab A. Gorlatch L. Ricci
T. Bair M. Gorodnichev Y. Robert
S. Bandini T. Hérault L. Rosaz
O. Bandman A. Hurson B. Roux
H. Bischof A. Iamnitchi V. Shaidurov
C. Blanchet E. Jeannot G. Silberman
C. Bodei Y. Karpov V. Sokolov
N. Busi T. Klostermann A. Solopov
E. Caron T. Klug A. Starita
Y. Caniou B. Lecussan D. Stodden
T. Casavant E. Kuzmin E. Timofeev
D. Chaly R. Leshchinskiy P. Trifonov
A. Chambarel J. Li C. Trinitis
D. Clarke O. Lodygensky A. Tsigulin
D. Defour T. Ludwig M. Valero
P. Degano A. Maggiolo-Schettini V. Valkovskii
F. Desprez N. Malyshkin L. Vanneschi
J. Duennweber V. Malyshkin I. Virbitskaite
D. Etiemble G. Mauri V. Vshivkov
P. Faber H. Mehammed M. Walter
G. Fedak J. Mueller J. Weidendorfer
K. Fuerlinger A. Nepomniaschaja J. Zola
A. Giersch L. Pagli

Table of Contents

On Evaluating the Performance of Security Protocols
Chiara Bodei, Mikael Buchholtz, Michele Curti, Pierpaolo Degano,
Flemming Nielson, Hanne Riis Nielson, Corrado Priami 1

Timed Equivalences for Timed Event Structures
M.V. Andreeva, I.B. Virbitskaite . 16

Similarity of Generalized Resources in Petri Nets
Vladimir A. Bashkin, Irina A. Lomazova . 27

Real-Time Event Structures and Scott Domains
R.S. Dubtsov . 42

Early-Stopping k-Set Agreement in Synchronous Systems Prone to Any
Number of Process Crashes

Philippe Raipin Parvedy, Michel Raynal, Corentin Travers 49

Allowing Atomic Objects to Coexist with Sequentially Consistent
Objects

Michel Raynal, Matthieu Roy . 59

An Approach to the Implementation of Dynamical Priorities Method
Valery A. Sokolov, Eugeny A. Timofeev . 74

Information Flow Analysis for VHDL
Terkel K. Tolstrup, Flemming Nielson, Hanne Riis Nielson 79

Composing Fine-Grained Parallel Algorithms for Spatial Dynamics
Simulation

Olga Bandman . 99

Situated Agents Interaction: Coordinated Change of State for Adjacent
Agents

Stefania Bandini, Sara Manzoni, Giuseppe Vizzari 114

Optimal Behavior of a Moving Creature in the Cellular Automata Model
Mathias Halbach, Rolf Hoffmann . 129

Systolic Routing in an Optical Butterfly
Risto T. Honkanen . 141

X Table of Contents

Feasibility of the Circularly Connected Analog CNN Cell Array-Based
Viterbi Decoder

Hongrak Son, Hyunjung Kim, Hyongsuk Kim, Kil To Chong 151

Associative Parallel Algorithm for Dynamic Reconstruction of a
Minimum Spanning Tree After Deletion of a Vertex

Anna Nepomniaschaya . 159

The Use of Vertical Processing Principle in Parallel Image Processing
on Conventional MIMD Computers

Evgeny V. Rusin . 174

Parallel Implementation of Back-Propagation Neural Network Software
on SMP Computers

Victor G. Tsaregorodtsev . 186

Development of Predictive TFRC with Neural Network
Sung-goo Yoo, Kil To Chong, Hyong-suk Kim . 193

Planning of Parallel Abstract Programs as Boolean Satisfiability
Gennady A. Oparin, Alexei P. Novopashin . 206

Efficient Communication Scheduling Methods for Irregular Data
Redistribution in Parallelizing Compilers

Shih-Chang Chen, Ching-Hsien Hsu, Chao-Yang Lan,
Chao-Tung Yang, Kuan-Ching Li . 216

Online Virtual Disk Migration with Performance Guarantees in a
Shared Storage Environment

Yong Feng, Yan-yuan Zhang, Rui-yong Jia, Xiao Zhang 226

ParC#: Parallel Computing with C# in .Net
João Fernando Ferreira, João Lúıs Sobral . 239

Minimizing Hotspot Delay by Fully Utilizing the Link Bandwidth on
2D Mesh with Virtual Cut-Through Switching

MinHwan Ok, Myong-soon Park . 249

A Shape Optimizing Load Distribution Heuristic for Parallel Adaptive
FEM Computations

Stefan Schamberger . 263

Performance Analysis of Applying Replica Selection Technology for
Data Grid Environments

Chao-Tung Yang, Chun-Hsiang Chen, Kuan-Ching Li,
Ching-Hsien Hsu . 278

Table of Contents XI

RAxML-OMP: An Efficient Program for Phylogenetic Inference on
SMPs

Alexandros Stamatakis, Michael Ott, Thomas Ludwig 288

OpenTS: An Outline of Dynamic Parallelization Approach
Sergey Abramov, Alexei Adamovich, Alexander Inyukhin,
Alexander Moskovsky, Vladimir Roganov, Elena Shevchuk,
Yuri Shevchuk, Alexander Vodomerov . 303

NumGrid Middleware: MPI Support for Computational Grids
D. Fougere, M. Gorodnichev, N. Malyshkin, V. Malyshkin,
A. Merkulov, B. Roux . 313

A Practical Tool for Detecting Races in OpenMP Programs
Young-Joo Kim, Mi-Young Park, So-Hee Park,
Yong-Kee Jun . 321

Comprehensive Cache Inspection with Hardware Monitors
Jie Tao, Jürgen Jeitner, Carsten Trinitis, Wolfgang Karl,
Josef Weidendorfer . 331

A Fast Technique for Constructing Evolutionary Tree with the
Application of Compact Sets

Kun-Ming Yu, Yu-Weir Chang, YaoHua Yang, Jiayi Zhou,
Chun-Yuan Lin, Chuan Yi Tang . 346

XenoCluster: A Grid Computing Approach to Finding Ancient
Evolutionary Genetic Anomalies

Jesse D. Walters, Thomas L. Casavant, John P. Robinson,
Thomas B. Bair, Terry A. Braun, Todd E. Scheetz 355

A Model for Designing and Implementing Parallel Applications Using
Extensible Architectural Skeletons

Mohammad Mursalin Akon, Dhrubajyoti Goswami,
Hon Fung Li . 367

A Parallel Computational Code for the Eduction of Coherent Structures
of Turbulence in Fluid Dynamics

Giancarlo Alfonsi, Leonardo Primavera . 381

Experimenting with a Multi-agent E-Commerce Environment
Costin Bădică, Maria Ganzha, Marcin Paprzycki,
Amalia Pı̂rvănescu . 393

XII Table of Contents

A Parallel Version for the Propagation Algorithm
Márcio Bastos Castro, Lucas Baldo, Luiz Gustavo Fernandes,
Mateus Raeder, Pedro Velho . 403

Parallelization Techniques for Multidimensional Hypercomplex Discrete
Fourier Transform

Marina Chicheva, Marat Aliev, Alexey Yershov . 413

An Implementation of the Matrix Multiplication Algorithm SUMMA
in mpF

Alexey Kalinov, Ilya Ledovskikh, Mikhail Posypkin,
Zakhar Levchenko, Vladimir Chizhov . 420

The Parallel Implementation of the Algorithm Solution of Model for
Two-Phase Cluster in Liquids

V.D. Korneev, V.A. Vshivkov, G.G. Lazareva, V.K. Kedrinskii 433

Neural Network Approach for Parallel Construction of Adaptive Meshes
Olga Nechaeva . 446

Clustering Multiple and Cooperative Instances of Computational
Intensive Software Tools

Dana Petcu, Marcin Paprzycki, Maria Ganzha . 452

A Multigrid Parallel Program for Protoplanetary Disc Simulation
Alexey V. Snytnikov, Vitaly A. Vshivkov . 457

Author Index . 469

On Evaluating the Performance

of Security Protocols�

Chiara Bodei1, Mikael Buchholtz3, Michele Curti1, Pierpaolo Degano1,
Flemming Nielson3, Hanne Riis Nielson3, and Corrado Priami2

1 Dipartimento di Informatica, Università di Pisa,
Largo B.Pontecorvo, 3, I-56127 Pisa, Italy
{chiara, curtim, degano}@di.unipi.it

2 Dipartimento di Informatica e Telecomunicazioni,
Università di Trento, Via Sommarive, I-1438050 Povo (TN), Italy

priami@science.unitn.it
3 Informatics and Mathematical Modelling, Technical University of Denmark,

Richard Petersens Plads bldg 321, DK-2800 Kongens Lyngby, Denmark
{mib, nielson, riis}@imm.dtu.dk

Abstract. We use an enhanced operational semantics to infer quanti-
tative measures on systems describing cryptographic protocols. System
transitions carry enhanced labels. We assign rates to transitions by only
looking at these labels. The rates reflect the distributed architecture run-
ning applications and the use of possibly different crypto-systems. We
then map transition systems to Markov chains and evaluate performance
of systems, using standard tools.

1 Introduction

Cryptographic protocols are used in distributed systems for authentication and
key exchange, and must therefore guarantee security. The mechanisms used are
always the result of a judicious balance between their cost and benefits. Per-
formance costs, in terms of time overhead and resource consumption, must be
carefully evaluated when choosing security mechanisms.

Here, we extend a preliminary idea introduced in [6] for the development of a
single, formal design methodology that supports designers in analysing the per-
formance of protocols, with a semi-mechanizable procedure. We provide a general
framework, where quantitative aspects, symbolically represented by parameters,
can be formally estimated. By changing only these parameters on the architec-
ture and the algorithm chosen, one can compare different implementations of the
same protocol or different protocols. This allows the designer to choose among
different alternatives, based on an evaluation of the trade-off between security
guarantees and their price.

We are mainly interested in evaluating the cost of each cryptographic oper-
ation and of each message exchange. Here, “cost” means any measure of quan-
titative properties such as speed, availability, etc.
� Supported in part by the EU IST-2001-32072 project DEGAS.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 C. Bodei et al.

Usually protocols are described through informal narrations. These narra-
tions include only a list of the messages to be exchanged, leaving it unspecified
which are the actions to be performed in receiving these messages (inputs, de-
cryptions and possible checks on them). This can lead, in general, to an inac-
curate estimation of costs. The above motivates the choice of using the process
algebra LySa [3,5], a close relative of the π- [24] and Spi-calculus [1], that de-
tails the protocol narration, in that outputs and the corresponding inputs are
made explicit and similarly for encryptions and the corresponding decryptions.
Also, LySa is explicit about which keys are fresh and about which checks are to
be performed on the received values. More generally, LySa provides us with a
unifying framework, in which security protocols can be specified and statically
analysed [3,5] through Control Flow Analysis. This analysis, fully automatic and
always terminating, is strong enough to report known flaws on a wide range of
protocols, and even to find new ones [4].

Technically, we give LySa (Sect. 2) an enhanced semantics, following [14], and
then we associate rates to each transition, in the style of [26]. It suffices to have in-
formation about the activities performed by the components of a system in isola-
tion, and about some features of the network architecture. We then mechanically
derive Markov chains using these rates (Sect. 3). The actual performance evalua-
tion is carried out using standard techniques and tools [33,31,32]. Significantly,
quantitative measures, typically on cryptography, here live together with the
usual qualitative semantics, where instead these aspects are usually abstracted
away. Specifically, there exists a very early prototype, based on π-calculus, on
which it is possible to run LySa, that we used for the case study presented here
(Sect. 4), along with a standard mathematical tool such as Mathematica. Relative
approaches are EMPA[8] and PEPA[19], to cite only a few.

In comparing different versions of the same protocol or different protocols,
specified in LySa, our technique can be suitably integrated with the Control
Flow one, to check security at the same stage.

Our framework can be extended [7] to estimate the cost of security attacks.
The typical capabilities of the Dolev-Yao attacker [16] go beyond the ones a
legitimate principal has. The needed model includes a set of the possible extra
actions in which the attacker exploits its computational power and its capability
of guessing (see also [10] and [23]). It would be interesting to deal with timing
attacks as well, even though this may considerably complicate our model.

2 LySa and Its Enhanced Semantics

The LySa calculus [3,5] is based on the π- [24] and Spi-calculus [1], but differs
from these essentially in two aspects: (i) the absence of channels: there is only
one global communication medium to which all processes have access; (ii) the
tests associated with input and decryption are naturally expressed using pattern
matching. Below, we assume that the reader is familiar with the basics of process
calculi.

On Evaluating the Performance of Security Protocols 3

Syntax. The syntax consists of terms E ∈ E and processes P ∈ P ,
E ::= a | x | {E1, · · · , Ek}E0

P ::= 0 | out.P | in.P | P1 | P2 | (ν a)P | dec in P | A(y1, . . . , yn)

where we introduced the following abbreviations: • out
�
= 〈E1, · · · , Ek〉, • in

�
=

(E′
1, · · · , E′

j ; xj+1, · · · , xk), • dec
�
= decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0 .

Intuitively, the process 0 or nil represents the null inactive process. The operator
| describes parallel composition of processes. The operator (νa) acts as a static
declaration for the name a in the process P the restriction prefixes. Restric-
tion is therefore used to create new names such as nonces or keys. The process
〈E1, · · · , Ek〉. P sends E1, · · · , Ek on the net and then continues like P . The pro-
cess (E1, · · · , Ej ; xj+1, · · · , xk). P receives the tuple E′

1, · · · , E′
k and continues as

P [Ej+1/xj+1, . . . , Ek/xk], provided that Ei = E′
i for all i ∈ [1, j]. The intuition is

that the matching succeeds when the first j values E′
i pairwise correspond to the

values Ei, and the effect is to bind the remaining k − j values to the variables
xj+1, · · · , xk. Note that, syntactically, a semi-colon separates the components
where matching is performed from those where only binding takes place. The
same simple form of patterns is also used for decryption (see [9] for a more flexible
choice). In fact, the process decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}in

E0
in P de-

crypts E = {E′
1, · · · , E′

k}E′
0

with the key E0. Whenever Ei = E′
i for all i ∈ [0, j],

the process behaves as P [Ej+1/xj+1, . . . , Ek/xk]. Finally, an agent is a static def-
inition of a parameterised process. Each agent identifier A has a unique defining
equation of the form A(ỹ) = P , where ỹ denotes a tuple y1, . . . , yn of distinct
names occurring free in P .

Working Example. Consider the following basic Kerberos key agreement protocol
[22] that is part of our case study. We assume that the AES algorithm [12] is
the crypto-system used here.

(Kerberos)

1. A → S : A, B
2. S → A : {B, T, L, KAB}KA , {A, T, L, KAB}KB

3. A → B : {A, T, L, KAB}KB , {A, T }KAB

4. B → A : {T, T }KAB

Intuitively, principal A asks the Key Distribution Center S for a session key to
share with B. S generates the key KAB, a timestamp T and lifetime L and pro-
duces an encryption of these components for A and another one for B, including
the identity of the other principal. Both encryptions are sent to A, that can
decrypt the first and forward the second to B, along with another encryption
that A obtains by encoding (A, T) with the new key. B can decrypt the first
encryption so to obtain KAB then B decrypts the second encryption, and uses
KAB to encrypt (T, T) as a replay to A. To simplify, we use {T, T }KAB rather
than the usual {T + 1}KAB .

The protocol specification in LySa is in Tab. 1, where the right column
reports a concise explanation of the action on the left, in terms of the number of
the message (called msg, while enc stands for an encrypted term) in the protocol
narration. The whole system is given by the parallel composition (|) of the three
processes A, B, S. Each part of the system performs a certain number of actions
and then restarts.

4 C. Bodei et al.

Table 1. Specification of Kerberos Protocol

1 Sys1 = (νKA)(νKB)((A|B)|S) KA, KB long-term keys

2 A = (〈A, B〉. A′) A sends msg (1)

4 A′ = (; vA
enc, v

B
enc). A

′′ A receives and checks msg (2)
5 A′′ = decrypt vA

enc as {B; vT , vL, vK}KA
in A′′′ A decrypts the enc in msg (2)

6 A′′′ = 〈vB
enc, {A, vT }vK 〉. A′′′′ A sends msg (3)

7 A′′′′ = (; wA
enc). A

′′′′′ A receives and checks msg (4)
8 A′′′′′ = decrypt wA

enc as {vT , vT ; }vK
in A A decrypts the enc in msg (4)

9 B = (; z1
enc, z

2
enc). B

′ B receives and checks msg (3)
10 B′ = decrypt z1

enc as {; zA, zT , zL, zK}KB
in B′′ B decrypts the 1st enc in msg (3)

11 B′′ = decrypt z2
enc as {zA, zT ; }zK

in B′′′ B decrypts the 2nd enc in msg (3)

12 B′′′ = 〈{zT , zT }zK 〉. B B sends msg (4)

13 S = (; yA, yB). S′ S receives and checks msg (1)
14 S′ = (νKAB)(νT)(νL) KAB fresh session key
15 (〈{yB , T, L, KAB}KA , {yA, T, L, KAB}KB 〉. S) S sends msg (2)

Enhanced Operational Semantics. Here, we give a concrete version of operational
semantics, called enhanced in the style of [13,14]. Our enhanced semantics for
LySa is a reduction semantics, built on top of the standard reduction semantics
[3], where both processes and transitions are annotated with labels that will be
helpful for computing costs.

Formally, each transition is enriched with an enhanced label θ which records
both the action corresponding to the transition and its syntactic context. Actu-
ally, the label of a communication transition records the two actions (input and
output) that lead to the transition. To facilitate the definition of our reduction
semantics, for each given process, we annotate each of its sub-processes P with
an encoding of the context in which P occurs. The encoding is a string of tags ϑ,
that essentially record the syntactic position of P w.r.t. the parallel composition
nesting. To do this, we exploit the abstract syntax tree of processes, built using
the binary parallel composition as operator. We introduce a tag ‖0 (‖1, resp.) for
the left (for the right, resp.) branch of a parallel composition. Labels are defined
as follows.

Definition 1. Let L = {‖0, ‖1}. Then, the set of context labels is defined as
L∗, i.e. the set of all the string generated by L, ranged over by ϑ.

We choose to have tags concerned with the parallel structure of processes,
i.e. linked to parallel composition “|”. For our present purpose, this is the only
necessary annotation (for other annotations, see [26,14]).

Technically, labelled processes are inductively obtained in a pre processing
step, by using the function T . This function (inductively) prefixes actions with
context labels: T unwinds the syntactic structure of processes, until reaching
a 0 or a constant. Given a process P , this transformation operates in linear
time with the number of prefixes. Note that this pre-processing step can be

On Evaluating the Performance of Security Protocols 5

completely mechanized. An auxiliary function � is needed to distribute context
labels on processes.

Definition 2. Let LP be the set of Labelled Processes, ranged over by
T, T ′, T0, T1. The functions T : P → LP and �: L∗ × LP → LP, written as
ϑ�T , are defined by induction in the box below:
− T (0) = 0
− T (μ.P) = μ.T (P), μ ∈ {out, in}
− T (P0|P1) = ‖0�T (P0) | ‖1�T (P1)
− T ((νa)P) = (νa)T (P)
− T (A(y1, . . . , yn)) = A(y1, . . . , yn)
− T (dec in P) = dec in T (P)

− ϑ�0 = 0
− ϑ� (ϑ′μ.T) = ϑϑ′μ.(ϑ�T), μ ∈ {out, in}
− ϑ� (T0 | T1) = (ϑ�T0) | (ϑ�T1)
− ϑ� (νa)T = (νa) ϑ�T
− ϑ�ϑ′A(y1, . . . , yn) = ϑϑ′A(y1, . . . , yn)
− ϑ�ϑ′ dec in T = ϑϑ′ dec in (ϑ�T)

The following example illustrates how T works on the process Sys1 = ((A |
B) | S). The context labels preceding the prefixes of the three processes are:
ϑA = ‖0‖0 for A, ϑB = ‖0‖1 for B, and ϑS = ‖1 for S.

T (((A | B) | S)) = ‖0 � (T (A | B))|‖1 �T (S) =

‖0 � (‖0 � (T (A)|‖1 � (T (B))|‖1 �T (S) = (‖0‖0 � (T (A)|‖0‖1 � (T (B))|‖1 �T (S)

For instance B is annotated with the label ϑ = ‖0‖1 as B is inside the right
branch of the inner parallel composition (A | B), and in turn on the left branch
of the outermost parallel composition in ((A | B) | S).

The enhanced label of a transition records its action, i.e. decryption or in-
put and output communications that lead to the transition. Also, actions come
prefixed by their context labels.

Definition 3. The set Θ � θ, ϑO, ϑI of enhanced labels is defined by
θ ::= 〈ϑO out, ϑI in〉 | 〈ϑ dec〉

As usual, our semantics consists of the standard structural congruence ≡ on
processes and of a set of rules defining the transition relation.

Our reduction relation θ−→⊆ LP ×LP is the least relation on closed labelled
processes that satisfies the rules in Tab. 2. In the rule (Com), the context labels
ϑO (and ϑI , resp.) of both the partners are recorded in the pair 〈ϑOout, ϑI in〉
together with the corresponding output (and input, resp.) prefix. In the rule
for decryption, the context label ϑ is recorded together with dec in the label of
the transition. The other rules are quite standard. Our semantics differs from
the standard one [3] because (i) processes are enriched with context labels ϑ
and (ii) reductions carry enhanced labels θ. By eliminating labels from both
transitions and processes, it is possible to recover the original reduction semantics
−→⊆ P × P .

For technical reasons, hereafter, we will restrict ourselves to finite state pro-
cesses, i.e. whose corresponding transition systems have a finite set of states.
Note that this does not mean that the behaviour of such processes is finite,
because their transition systems may have loops.

6 C. Bodei et al.

A | B | S A′ | B | S′ A′′ | B | S′′

A′′′ | B | S′′

A′′′′ | B′ | S′′

A′′′′′ | B′′′′ | S′′ A′′′′ | B′′′ | S′′ A′′′′ | B′′ | S′′

θ0,1:A−→S θ1,2:S−→A

θ2,A dec msg(2)

θ3,3:A−→B

θ4,B dec msg(3)

θ5,B dec msg(3)θ6,4:B−→A

θ7,A dec msg(4)

Fig. 1. Sys1 Transition System

Table 2. Enhanced Reduction Semantics, T
θ−→ T ′

(Com)

∧j
i=1 Ei = E′

i

ϑO out.T | ϑI in.T ′ 〈ϑOout,ϑIin〉−→ T | T ′[Ej+1/xj+1, · · · , Ek/xk]

(Decr)

∧j
i=0 Ei = E′

i

ϑ dec in T
〈ϑ dec〉−→ T [Ej+1/xj+1, · · · , Ek/xk]

(Par)

T0
θ−→ T ′

0

T0 | T1
θ−→ T ′

0 | T1

(Res)

T
θ−→ T ′

(ν a)T
θ−→ (ν a)T ′

(Ide) :

T (P){K̃/ỹ} θ−→ T ′

ϑA(K̃)
ϑθ−→ ϑ�T ′ , A(ỹ) = P

(Congr)

T ≡ T0 ∧ T0
θ−→ T1 ∧ T1 ≡ T ′

T
θ−→ T ′

out = 〈E1, · · · , Ek〉,
in = (E′

1, · · · , E′
j ; xj+1, · · · , xk),

dec = decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0

Example (cont’d). In Fig. 1, we present the (finite) transition systems corre-
sponding to Sys1. To improve readability, we add a further component to the
labels ϑi of transitions. A transition from state T to state T ′ has the form

T
(θ,caption)−→ T ′, where caption is a concise description of the step of the pro-

tocol narration. More precisely, it refers to message exchanges and decryptions
(abbreviated as dec). Captions are of no other use.

The enhanced labels of Sys1 are reported below. Since in our example, tran-
sitions have different labels each, we feel free to use hereafter the label θi for the
i-th transition.

On Evaluating the Performance of Security Protocols 7

θ0 = 〈ϑA〈A,B〉, ϑS(; z1
enc, z

2
enc)〉

θ1 = 〈ϑS〈{yB, T, L, KAB}KA , {yA, T, L, KAB}KB 〉, ϑA(; vA
enc, v

B
enc)〉

θ2 = 〈ϑA decrypt {B, T, L, KAB}KA as {B; vT , vL, vK}KA 〉
θ3 = 〈ϑA〈{A, T, L, KAB}KB , {A, T}KAB 〉, ϑB(; z1

enc, z
2
enc)〉

θ4 = 〈ϑB decrypt {A, T, L, KAB}KB as {; zA, zT , zL, zK}KB 〉
θ5 = 〈ϑB decrypt {A, T}KAB as {A, T ; }KAB 〉
θ6 = 〈ϑB〈{T, T}KAB 〉, ϑA(; wA

enc)〉
θ7 = 〈ϑA decrypt {T, T}KAB as {T, T ; }KB 〉

3 Stochastic Analysis

Costs of transitions are derived by inspecting enhanced labels, following [26].
This information is sufficient to extract the necessary quantitative information
to obtain the Continuous Time Markov Chains (CTMC) (see [2,25] for more
details on the theory of stochastic processes). In general, by “cost” we mean any
measure that affects quantitative properties of transitions: here, we intend the
time the system is likely to remain within a given transition. We specify the cost
of a protocol in terms of the time overhead due to its primitives (along the same
lines as [28]). The cost of (the component of) the transition depends on both the
current action and on its context. Since the semantics of a language specifies its
abstract machine, the context in which an action occurs represents the run-time
support routines that the target machine performs to fire that action.

First, we intuitively present the main factors that influence the costs of ac-
tions and those due to their context. For simplicity, here we ignore the costs for
other primitives, e.g. restriction or constant invocation (see [26] for a complete
treatment).

– The cost of a communication depends on the costs of the input and output
components. In particular, the cost of an (i) output depends on the size of
the message and on the cost of each term of the message sent, in particu-
lar on its encryptions; (ii) input depends on the size of the message and on
the cost of checks needed to accept the message. Actually, the two partners
independently perform some low-level operations locally to their environ-
ment, each of which leads to a delay. Since communication is synchronous
and handshaking, the overall cost corresponds to the cost paid by the slower
partner.

– The cost of both encryption and decryption depends on the sizes of the cleart-
ext and ciphertext, resp.; the complexity of the algorithm that implements it;
the cipher mode adopted; the kind of the key (short/long, short-term/long-
term). The length of the key is important: usually, the longer the key, the
greater the computing time. In addition, the cost for decryption depends on
the cost of the checks needed to accept the decryption.

– The cost of parallel composition is evaluated according to the number of
available processors and to the speed of system clock.

To define a cost function, we start by considering the execution of each action
on a dedicated architecture that only has to perform that action, and we estimate

8 C. Bodei et al.

the corresponding duration with a fixed rate r. Then we model the performance
degradation due to the run-time support. To do that, we introduce a scaling
factor for r in correspondence with each routine called by the implementation
of the transition θ under consideration. Here, we just propose a format for these
functions, with parameters to be instantiated on need. Note that these param-
eters depend on the target machine, e.g. in a system where the cryptographic
operations are performed at very high speed (e.g. by a cryptographic accelera-
tor), but with a slow link (low bandwidth), the time will be low for encryptions
and high for communication; vice versa, in a system offering a high bandwidth,
but poor cryptography resources.

Technically, we interpret costs as parameters of exponential distributions
F (t) = 1 − e−rt, with rate r and t as time parameter (general distributions are
also possible see [30]). The rate r associated with the transition is the parameter
which identifies the exponential distribution of the duration times of the transi-
tion, as usual in stochastic process algebras (e.g. [19,18]). The shape of F (t) is a
curve which grows from 0 asymptotically approaching 1 for positive values of its
argument t. The parameter r determines the slope of the curve: the greater r,
the faster F (t) approaches its asymptotic value. The probability of performing
an action with parameter r within time x is F (x) = 1 − e−rx, so r determines
the time, Δt, needed to have a probability near to 1.

3.1 Cost Functions

We define in a few steps the function that associates rates with communication
and decryption transitions, or, more precisely, with their enhanced labels. We
first give the auxiliary function fE : E → IR+ that estimates the effort needed
to manipulate terms E ∈ E .

• fE(a) = size(a) • fE({E1, . . . , Ek}E0) = fenc(fE(E1), ..., fE(E1), kind(E0))

The size of a name a (size(a)) matters. For an encrypted term, we use the
function fenc, which in turn depends on the estimate of the terms to encrypt
and on the kind of the key (represented by kind(E0)), i.e. on its length and on
the corresponding crypto-system.

Then we assign costs to actions in {in, out, dec}. Formally, the function $α :
{in, out, dec} → IR+ is defined as

• $α(〈E1, . . . , Ek〉) = fout(fE(E1), ..., fE(E1), bw)
• $α((E1, . . . , Ej ; xj+1, . . . , xk)) = fin(fE(E1), ..., fE(Ej), match(j), bw)
• $α(decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0) =

fdec(fE(E), kind(E0), match(j))

The functions fout and fin define the costs of the routines which implement
the send and receive primitives. Besides the implementation cost due to their
own algorithms, the functions above depend on the bandwidth of the communi-
cation channel (represented by bw) and the cost of the exchanged terms, in turn
computed by the auxiliary function fE . Also, the cost of an input depends on the
number of tests or matchings required (represented by match(j)). Finally, the

On Evaluating the Performance of Security Protocols 9

function fdec represents the cost of a decryption. It depends on the manipulated
terms (fE(E)), on the kind of key (kind(E0)) and on the number of matchings
(match(j)).

We now consider the context in which the actions occur. To determine the
slowing factor due to parallel composition, we associate a cost to each context
label ϑ, as expressed by the function $l : {‖0, ‖1}∗ → (0, 1]. Parallel composition
is evaluated according to the number np of processors available, and on the
number of processes that run on them. Another factor is given by the speed of
clock, the system clock.
• $l(ϑ) = f||(np, |ϑ|, clock)

Finally, the function $: Θ → IR+ associates rates with enhanced labels.
• $(〈ϑOout, ϑI in〉) = min{$l(ϑO) · $α(out), $l(ϑI) · $α(in)}
• $〈ϑdec〉 = $l(ϑ) · $α(dec)

As mentioned above, the two partners independently perform some low-level
operations locally to their environment, represented by the two context labels
ϑO and ϑI . Each label leads to a delay ($l(ϑO) and $l(ϑI), resp.) in the rate of
the corresponding action ($α(out) and $α(in), resp.). Thus, the cost paid by the
slower partner corresponds to the minimum cost of the operations performed by
the participants, in isolation. Indeed the lower the cost, i.e. the rate, the greater
the time needed to complete an action and hence the slower the speed of the
transition occurring. The smaller r, the slower F (t) = 1 − e−rt approaches its
asymptotic value.

Note that we do not fix the actual cost function: we only propose for it a
set of parameters to reflect some features of an idealized architecture and of
a particular cryptosystem. Although very abstract, this suffices to make our
point. A precise instantiation comes with the refinement steps from specification
to implementations as soon as actual parameters become available.

We now associate a rate to each transition in the transition system Sys1.
For the sake of simplicity, we assume that each principal has enough processing
power and then we can map each ϑ to 1. We could vary this value considering
e.g. differences in the speed of clock for the two processes. We instantiate the cost
functions given above, by using the following parameters each used to compute
the rate corresponding to a particular action (sending, receiving and decryption)
or a part of it, such as an encryption or a pattern matching: (i) e and d for
encrypting and for decrypting, (ii) s and r for sending and for receiving, (iii) m
for pattern matching. The functions are:

• fE(a) = 1
• fE({E1, . . . , Ek}E0) = e

s
·
∑k

i=1 fE(Ei) +
∑k

i=1 fE(Ei)
• $α(〈E1, . . . , Ek〉) = 1

s·
∑

i
i=1 fE(Ei)

• $α((E1, . . . , Ej ; xj+1, . . . , xk)) = 1
r·k+m·j

• $α(decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0) = 1
d·k+m·j

Intuitively, these parameters represent the time spent performing the corre-
sponding action on a single term. They occur in the denominator, therefore
keeping the rule that the faster the time, the slower the rate. Since transmission

10 C. Bodei et al.

is usually more time-consuming than the corresponding reception, the rate of a
communication, will always be that of output.
Example (cont’d) The rate c0 of the first transition of Sys1 is 1

2s :
c0 = $(θ0) = min{($l(ϑA) · $α(〈A,B〉, $l(ϑS) · $α((; z1

enc, z
2
enc))} = min{ 1

2s
, 1

2r
}.

All the rates ci = $(θi) are: c0 = 1
2s , c1 = 1

8s+8e , c2 = 1
4d+m

, c3 = 1
6s+6e , c4 = 1

4d+m

c5 = 1
2d+2m , c6 = 1

2s+2e and c7 = 1
2d+2m .

3.2 Markov Chains and Performance Measures

Our first step is obtaining a Continuous Time Markov Chain (CTMC) from
a transition system. Then, we shall calculate the actual performance measure,
e.g. the throughput or utilization of a certain resource. We use the rates of tran-
sitions computed in Subsection 3.1, to transform a transition system T into its
corresponding CTMC(T): a state is associated with each node of the transition
system, while the transitions between states are defined by the arcs.

Actually, the rate q(Ti, Tj) at which a system changes from behaving like pro-
cess Ti to behaving like Tj is the sum of the single rates of all the possible tran-
sitions from Ti to Tj . Note that q(Ti, Tj) coincides with the off-diagonal element
qij of the generator matrix of the CTMC, namely Q. Recall that a CTMC can be
seen as a directed graph and that its matrix Q (apart from its diagonal) repre-
sents its adjacency matrix. Hence, hereafter we will use indistinguishably CTMC
and its corresponding Q to denote a Markov chain. More formally, the entries of

the generator matrix Q are defined as qij =

⎧⎪⎪⎨⎪⎪⎩
q(Ti, Tj) =

∑
Ti

θk−→Tj

$(θk) if i
= j

−
n∑

j=0,j �=i

qij if i = j

Example (cont’d). Consider the transition system Sys1. Since it is finite and has
a cyclic initial state, then there exists its stationary distribution. The stationary
probability distribution of a CTMC is Π = (X0, . . . , Xn−1) such that Π solves the
matrix equation ΠT Q = 0 and

∑n
i=0 Xi = 1. We derive the following generator

matrix Q1 of CTMC(Sys1) and the corresponding stationary distributions is
Π1, where C = 9s+ 8e + 6d + 3m.

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c0 c0 0 0 0 0 0 0
0 −c1 c1 0 0 0 0 0
0 0 −c2 c2 0 0 0 0
0 0 0 −c3 c3 0 0 0
0 0 0 0 −c4 c4 0 0
0 0 0 0 0 −c5 c5 0
0 0 0 0 0 0 −c6 c6

c7 0 0 0 0 0 0 −c7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Π1 =
[s
C
,
4(s + e)

C
,
4d + m

C
,
3(s + e)

C
,
4d + m

C
,
d + m

C
,
e + s

C
,
d + m

C
,
]

On Evaluating the Performance of Security Protocols 11

Evaluating the Performance. In order to define performance measures for a
process T , we define a reward structure associated with T , following [21,19,11].
Usually, a reward structure is simply a function that associates a reward with
any state passed through in a computation of T . For instance, when calculating
the utilisation of a resource, we assign value 1 to any state in which the use of the
resource is enabled (typically the source of a transition that uses the resource).
All the other states earn the value 0. Instead we use a slightly different notion,
where rewards are computed from rates of transitions [26]. To measure instead
the throughput of a system, i.e. the amount of useful work accomplished per unit
time, a reasonable choice is to use as nonzero reward a value equal to the rate
of the corresponding transition. The reward structure of a process T is a vector
of rewards with as many elements as the number of states of T . By looking at
the stationary distribution of and varying the reward structure, we can compute
different performance measures. The total reward is obtained by multiplying the
stationary distribution and the reward structure.

Definition 4. Given a process T , let Π = (X0, . . . , Xn−1) be its stationary
distribution and ρ = ρ(0), ..., ρ(n− 1) be its reward structure. The total reward
of T is computed as R(T) =

∑
i ρ(i) ·Xi.

Example (cont’d). The throughput for a given activity is found by first associ-
ating a transition reward equal to the activity rate with each transition. In our
systems each transition is fired only once. Also, the graph of the corresponding
CTMC is cyclic and all the labels represent different activities. This amounts to
saying that the throughput of all the activities is the same, and we can freely
choose one of them to compute the throughput of Sys1. Thus we associate a
transition reward equal to its rate with the last communication and a null tran-
sition reward with all the others communications. From them, we compute the
reward structures as ρ1 = (0, 0, 0, 0, 0, 0, c7), where c7 = 1

2d+2m . The total reward
R(Sys1) of the system amounts then to d+m

(2d+2m)(9s14+d+3m) . To use this measure,
it is necessary to instantiate our parameters under various hypotheses, depend-
ing on several factors, such as the network load, the packet size, the number of
mobile stations and so on. We delay this kind of considerations to the next sec-
tion, where this measure will be compared with the one obtained for a different
protocol.

4 A Case Study

It is well known that asymmetric key cryptography is more expensive than sym-
metric key cryptography. This is why often the first technique is adopted for
long-term keys, while the other is exploited for session keys. We want to apply
our framework and compare public versus secret encryption techniques. Follow-
ing [20], we compare the two key-agreement protocols Kerberos [22] (the one
used as working example) and Diffie-Hellman, compared there for their energy
consumption.

12 C. Bodei et al.

Before the comparison, we need to illustrate the second protocol and to apply
it the introduced technique. The Diffie-Hellman protocol is based on the use of
two functions, i.e. g(x) = αx mod p and f(x, y) = yx mod p, where p is a
large prime (public) and α of Z∗

p (the set of all the numbers prime with p) is
a generator. Here, we can safely abstract from the underlying number theory.
We need to slightly extend the syntax with the following productions, where E
and E′ are terms and each of the two functions g and f are considered as term
constructors. The semantics is modified accordingly, by adding a case for the
function T and by adding an axiom to the reduction semantics.

E ::= g(E) |f(E, E′)
P ::= let x be f(E, E′) in P

T (let x be f(E, E′) in P) = let x be f(E, E′) in T (P)
ϑ�ϑ′ (let x be f(E, E′) in T) = ϑϑ′ let x be f(E, E′) in (ϑ�T)

ϑ let x be f(E, E′) in T
〈ϑf〉−→ T [f(E, E′)/x]

The protocol is simply: (Diffie-Hellman)
1. A → B : g(KA)
2. B → A : g(KB)

At the end of the exchange A computes the key as f(KA, g(KB)), while B com-
putes it as f(g(KA), KB). These steps are made explicit in the LySa specification
of the protocol, Sys2 = (A|B), given in Tab. 3. The two keys coincide, because
of the following algebraic rule: f(x, g(y)) = f(y, g(x)). Here, KA and KB serve
as private keys, while g(KA) and g(KB) serve as public keys. Note that here
we do not need to extend our syntax with asymmetric encryption (we refer the
reader to [3]).

The Diffie-Hellman protocol can be efficiently implemented using the Elliptic
Curve Asymmetric-key (ECC) algorithm [17], that operates over a group of
points on an elliptic curve. For each curve a base point G is fixed, a large random
integer k acts as a private key, while kG (scalar point multiplication that results
in another point on the curve) acts as the corresponding public key. Scalar
point multiplication is obtained by a combination of point-additions and point-
doublings. So, we can use (1) g(x) = xG and (2) f(x, y) = xy.

Table 3. Specification of Diffie-Hellman Protocol

1 Sys2 = (A|B)
2 A = (νKA) KA private key
3 (〈g(KA)〉. A′) A sends msg (1)
4 A′ = (; vA

g). A′′ A receives msg (2)
5 A′′ = let vA

g be f(KA, vA
g) in A A computes f

6 B = (νKB) KB private key
7 B′ = (; vB

g). B′′ B receives msg (1)
8 (〈g(KB)〉. B′) B sends msg (2)
9 B′′ = let vB

g be f(KB , vA
g) in B B computes f

On Evaluating the Performance of Security Protocols 13

For lack of space, we omit here the (finite) transition systems of Sys2, that
like the one of Sys1 has a unique cyclic path. We directly give the rates corre-
sponding to the transitions:

c′0 = 1
s+4pm , c′1 = 1

s+4pm , c′2 = 1
4pm , c′3 = 1

4pm .

We use the same cost parameters as in Section 3. In particular, we assume
that the sending parameter s is the same used for Sys1 (again transmission is
more expensive than reception). Since the functions g and f in Sys2 are both
implemented with four elliptic curve point multiplications, we assume that the
cost for g and f depend on the parameter pm (parameter for point multiplication),
more precisely $α(f(E, E′)) = 1

4pm and $α(〈g(E)〉) = 1
s+4pm . Again, for the sake

of simplicity, we assume that each principal has enough processing power, so
$||(ϑ) = 1 for each ϑ.

The stationary distribution Π2, where D = 2(8pm+ s), corresponding to Q2

of CTMC(Sys2), here omitted, is:

Π2 =
[
s + 4pm

D
,
s + 4pm

D
,
4pm

D
,
4pm

D

]
We can now compare the performance of the two protocols by relating their

throughputs. As done before, we associate a transition reward equal to its rate
with the last communication and a null transition reward with all the others
communications. We compute then the reward structure ρ2 = (0, 0, 0, c′3) for
Sys2 where c′3 = 1

4pm . Furthermore, we assume the same cost for encryption and
decryption, i.e. e = d. The total reward of Sys2 is R(Sys2) = 1

2(s+8pm) and is
such that:

R(Sys1) − R(Sys2) =
8pm− (8s + 14d + 3m)

2((s + 8pm))((9s14 + d + 3m))
> 0 if pm >

(8s + 14d + 3m)

8

Experimentally, we know that point multiplication is significantly more time-
consuming than decryption, therefore, we can assume that pm is significantly
higher than d. Consequently, we conclude that R(Sys1) > R(Sys2), i.e. the first
system has a better performance. Clearly, energy consumption of a cryptographic
algorithm is strongly related to its time complexity and thus our result agrees
with the one obtained in [20].

Actually, our working example presents a simple setting, in which the in-
volved transition systems have a unique cyclic path. In general, transition sys-
tems have more loops. Typically, this happens with a multi-session version of
the protocols presented before, where more copies of each principal (A, B and
S) running in parallel, lead to more transitions with the same source. Also, this
happens with non-repudiation protocols.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols - The Spi
calculus. Information and Computation, 148(1):1–70, Jan 1999.

2. A. A. Allen. Probability, Statistics and Queueing Theory with Computer Science
Applications. Academic Press, 1978.

14 C. Bodei et al.

3. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. Proc. of CSFW’03, pages 126–140. IEEE, 2003.

4. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Control Flow
Analysis can find new flaws too. Proc. of Workshop on Issues in the Theory of
Security (WITS’04), 2004.

5. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static vali-
dation of security protocos. To appear in Journal of Computer Securuty.

6. C. Bodei, M. Buchholtz, M. Curti, P. Degano, F. Nielson, and H. Riis Nielson and
C. Priami. Performance Evaluation of Security Protocols specified in Lysa. Proc.
of (QAPL’04), ENTCS 112, 2005.

7. C. Bodei, M. Curti, P. Degano, C. Priami. A Quantitative Study of Two Attacks.
Proc. of (WISP’04), ENTCS 121, 2005.

8. M. Bravetti, M. Bernardo and R. Gorrieri. Towards Performance Evaluation with
General Distributions in Process Algebras.Proc. of CONCUR98, LNCS 1466, 1998.

9. M. Buchholtz, F. Nielson, and H. Riis Nielson. A calculus for control flow analysis
of security protocols. International Journal of Information Security, 2 (3-4), 2004.

10. I. Cervesato Fine-Grained MSR Specifications for Quantitative Security Analysis.
Proc. of WITS’04, pp. 111-127, 2004.

11. G. Clark. Formalising the specifications of rewards with PEPA. Proc. of PAPM’96,
pp. 136-160. CLUT, Torino, 1996.

12. J. Daemen and V. Rijndael. The design of Rijndael. Springer-Verlag, 2002.
13. P. Degano and C. Priami. Non Interleaving Semantics for Mobile Processes. The-

oretical Computer Science, 216:237–270, 1999.
14. P. Degano and C. Priami. Enhanced Operational Semantics. ACM Computing

Surveys, 33, 2 (June 2001), 135-176.
15. W. Diffie and M. E. Hellman. New directions in Cryptography. IEEE Transactions

on Information Theory, IT-22(6):644-654, 1976.
16. D. Dolev and A. Yao. On the security of public key protocols. IEEE TIT, IT-

29(12):198–208, 1983.
17. IEEE P1363 Standard Specification for Public-Key Cryptography, 1999
18. H. Hermanns and U. Herzog and V. Mertsiotakis. Stochastic process algebras

– between LOTOS and Markov Chains. Computer Networks and ISDN systems
30(9-10):901-924, 1998.

19. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge Uni-
versity Press, 1996.

20. A. Hodjat and I. Verbauwhede. The Energy Cost of Secrets in Ad-hoc Networks.
IEEE Circuits and Systems Workshop on Wireless Communications and Network-
ing, 2002.

21. R, Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Systems.
Volume II, Wiley, 1971.

22. J.T. Kohl and B.C. Clifford. The Kerberos network authentication service (V5).
The Internet Society, Sept. 1993.RCF 1510.

23. C. Meadows. A cost-based framework for analysis of denial of service in networks.
Journal of Computer Security, 9(1/2), pp.143 - 164, 2001.

24. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II).
Info. & Co., 100(1):1–77, 1992.

25. R. Nelson. Probability, Stochastic Processes and Queeing Theory. Springer, 1995.
26. C. Nottegar, C. Priami and P. Degano. Performance Evaluation of Mobile Processes

via Abstract Machines. Transactions on Software Engineering, 27(10), 2001.
27. D. Otway and O. Rees. Efficient and timely mutual authentication. ACM Operating

Systems Review, 21(1):8–10, 1987.

On Evaluating the Performance of Security Protocols 15

28. A. Perrig and D.Song. A First Step towards the Automatic Generation of Security
Protocols. Proc. of Network and Distributed System Security Symposium, 2000.

29. G. Plotkin. A Structural Approach to Operational Semantics. Tech. Rep. Aarhus
University, Denmark, 1981, DAIMI FN-19

30. C. Priami. Language-based Performance Prediction of Distributed and Mobile
Systems Information and Computation 175: 119-145, 2002.

31. A. Reibnam and R. Smith and K. Trivedi. Markov and Markov reward model
transient analysis: an overview of numerical approaches. European Journal of Op-
erations Research: 40:257-267, 1989.

32. W. J. Stewart. Introduction to the numerical solutions of Markov chains. Princeton
University Press, 1994.

33. K. S. Trivedi. Probability and Statistics with Reliability, Queeing and Computer
Science Applications. Edgewood Cliffs, NY, 1982.

Timed Equivalences

for Timed Event Structures

M.V. Andreeva and I.B. Virbitskaite

A.P. Ershov Institute of Informatics Systems,
Siberian Division of the Russian Academy of Sciences,

6, Acad. Lavrentiev avenue, 630090, Novosibirsk, Russia
Phone: +7 3833 30 40 47, Fax: +7 3833 32 34 94,

virb@iis.nsk.su

Abstract. The intention of the paper is to develop a framework for ob-
servational equivalences in the setting of a real-time partial order model.
In particular, we introduce a family of equivalences of linear time –
branching time spectrum based on interleaving, causal trees and par-
tial order semantics, in the setting of event structures with dense time
domain. We study the relationships between these approaches and show
their discriminating power. Furthermore, when dealing with particular
subclasses of the model under consideration there is no difference be-
tween a more concrete or a more abstract approach.

1 Introduction

For the purpose of specification and verification of the behaviour of systems,
it is necessary to provide a number of suitable equivalence notions in order to
be able to choose the simplest possible view of the system. When comparing
behavioural equivalences for concurrency, it is common practice to distinguish
between two aspects. The first one which is most dominant is the so-called linear
time – branching time spectrum [11]. In the former, a process is determined by
its possible executions, the behaviour of a system is represented by the set of its
possible executions, whereas in the latter the branching structure of processes is
taken in account as well. Branching time semantics is of fundamental importance
in concurrency, exactly because it is independent of the precise nature of observ-
ability. The standard example of a linear time equivalence is (interleaving) trace
equivalence as put forward in [15], the standard example of a branching time
equivalence is (interleaving) bisimulation equivalence as proposed in [14]. Fur-
thermore, there is (interleaving) testing equivalence [10] in between. The other
aspect to consider is whether partial orders between action occurrences are taken
into account. In the interleaving approach, these are neglected. Many attempts
have been made to overcome the limits of the interleaving approach and to allow
observer to discriminate systems via an equivalence accordingly to the degree of
concurrency they exploit in their computations. As a result, various equivalences
based on modelling causal relations explicitly by partial orders have appeared in
the literature (see [1,12,13] among others). The culminating point here is history
preserving bisimulation.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 16–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Timed Equivalences for Timed Event Structures 17

Recently, a growing interest can be observed in modelling real-time systems
which imply a need of a representation of the lapse of time. Several formal
methods for specifying and reasoning about such systems have been proposed in
the last ten years (see [3,4] as surveys). On the other hand, the incorporation of
real time into equivalence notions is less advanced. There are a few papers (see,
for example, [8,19,23]) where decidability questions of interleaving time-sensitive
equivalences are investigated. However, to our best knowledge, the literature of
real-time partial order models [7,16] has hitherto lacked such equivalences. In
this regard, the paper [20] is a welcome exception, where step and partial order
semantics of timed trace and bisimulation equivalences have been provided in the
framework of timed event structures with urgent actions. Moreover, in the papers
[5,18] time-sensitive testing has been treated for different real-time extensions of
event structures. Finally, our origin has been the paper [21] where the open maps
framework has been used to obtain abstract bisimilarities which are established
to coincide with timed extensions of partial order based equivalences.

In this paper, we seek to develop a framework for observational equivalences
in the setting of a real-time partial order model. In particular, we introduce
a family of equivalences of linear time – branching time spectrum based on
interleaving, causal trees and partial order semantics, in the setting of event
structures with dense time domain. This allows us to take into account pro-
cesses’ timing behaviour in addition to their degrees of relative concurrency and
nondeterminism. We study the relationships between these approaches to the
semantics of real-time concurrent systems, and show their discriminating power.
Furthermore, when dealing with particular subclasses of the model under con-
sideration, such as sequential and deterministic timed event structures, there is
no difference between a more concrete or a more abstract approach.

The rest of the paper is organized as follows. The basic notions concerning
timed event structures are introduced in the next section. Three different families
of behavioural equivalences based on interleaving, causal trees and partial orders
semantics are given in the following three sections. In section 6, we establish the
interrelationships between the equivalence notions in the setting of the model
under consideration and its subclasses. Section 7 contains some conclusions and
remarks on future work. For lack of the space, all the proofs have been omitted.
They can be found in the full version of the paper [6].

2 Timed Event Structures

In this section, we introduce some basic notions and notations concerning timed
event structures.

First, we recall a notion of event structures [22] which constitutes a major
branch of partial order models. The main idea behind event structures is to view
distributed computations as action occurrences, called events, together with a
notion of causality dependency between events (which is reasonably character-
ized via a partial order). Moreover, in order to model nondeterminism, there is a
notion of conflicting (mutually incompatible) events. A labelling function records

18 M.V. Andreeva and I.B. Virbitskaite

which action an event corresponds to. Let Act be a finite set of actions and E
a set of events. A (labelled) event structure is a tuple S = (E,≤,#, l), where
E ⊆ E is a set of events; ≤ ⊆ E × E is a partial order (the causality relation),
satisfying the principle of finite causes: ∀e ∈ E � ↓ e = {e′ ∈ E | e′ ≤ e} is finite;
⊆ E × E is a symmetric and irreflexive relation (the conflict relation), satis-
fying the principle of conflict heredity: ∀e, e′, e′′ ∈ E � e # e′ ≤ e′′ ⇒ e #e′′;
l : E −→ Act is a labelling function. For an event structure S = (E,≤, #, l), we
define the following: � = (E ×E) \ (≤ ∪ ≤−1 ∪ #) (the concurrency relation),
e#1d ⇐⇒ e#d∧∀e′, d′ ∈ E � (e′ ≤ e∧d′ ≤ d∧ e′#d′)⇒ (e′ = e & d′ = d) (the
minimal conflict relation). For C ⊆ E, the restriction of S to C, denoted S�C, is
defined as (C,≤ ∩(C×C), #∩(C×C), l |C). Let C ⊆ E. Then, C is left-closed iff
∀e, e′ ∈ E � e ∈ C ∧ e′ ≤ e ⇒ e′ ∈ C; C is conflict-free iff ∀e, e′ ∈ C � ¬(e # e′);
C is a configuration of S iff C is left-closed and conflict-free. Let C(S) denote
the set of all finite configurations of S.

We next present the model of timed event structures from [21]. Real time is
incorporated into event structures by assuming that all events happen ”instan-
taneously”, while timing constraints w.r.t. a global real-valued clock restrict the
times at which events may occur. Moreover, all events are non-urgent, i.e. they
are allowed but not forced to occur once they are ready (their causal predeces-
sors have occurred and their timing constraints are respected). Let R be the set
of nonnegative real numbers.

Definition 1. A (labelled) timed event structure is a triple TS = (S, Eot, Lot),
where S = (E,≤, #, l) is a (labelled) event structure, Eot, Lot : E → R
are functions of the earliest and latest occurrence times of events, satisfying
Eot(e) ≤ Lot(e) for all e ∈ E.

For depicting timed event structures, we use the following conventions. The
action labels and timing constraints associated with events are drawn near the
events. If no confusion arises, we will often use action labels rather than event
identities to denote events. The <-relation is depicted by arcs (omitting those
derivable by transitivity), and conflicts are also drawn (omitting those derivable
by conflict heredity).

Example 1. A trivial example of a labelled timed event structure is shown in
Fig. 1.

c : e3

a : e1

[3, 5]

[5, 8]

b : e2

[4, 7]

T̃ S :

�

#

Fig. 1.

Timed Equivalences for Timed Event Structures 19

Timed event structures TS and TS′ are isomorphic (denoted TS � TS′), if
there exists a bijection ϕ : ETS −→ ETS′ such that e ≤TS e′ iff ϕ(e) ≤TS′ ϕ(e′),
e #TS e′ iff ϕ(e) #TS′ ϕ(e′), lTS(e) = lTS′(ϕ(e)), EotTS(e) = EotTS′(ϕ(e)),
and LotTS(e) = LotTS′(ϕ(e)), for all e, e′ ∈ ETS .

An execution of a timed event structure is a timed configuration which con-
sists of a configuration and a timing function recording global time moments
at which events occur, and satisfies some additional requirements. Let TS =
(S, Eot, Lot) be a timed event structure, C ∈ C(S), and T : C −→ R. Then
TC = (C, T) is a timed configuration of TS iff the following conditions hold: (i)
∀ e ∈ C � Eot(e) ≤ T (e) ≤ Lot(e), (ii) ∀ e, e′ ∈ C � e ≤TS e′ ⇒ T (e) ≤ T (e′).
Informally speaking, the condition (i) expresses that an event can occur at a time
when its timing constraints are met; the condition (ii) says that for all two events
e and e′ occurred if e causally precedes e′ then e should temporally precede e′.
The initial timed configuration of TS is (∅, ∅). We use T C(TS) to denote the
set of timed configurations of TS. To illustrate the concept, consider the timed
event structure T̃ S shown in Fig. 1. The set of possible timed configurations of
T̃ S is {(∅, ∅), ({e1}, T1), ({e3}, T2), ({e1, e3}, T3), ({e1, e2}, T4) | T1(e1) ∈ [3, 5];
T2(e3) ∈ [5, 8]; T3(e1) ∈ [3, 5], T3(e3) ∈ [5, 8]; T4(e1) ∈ [3, 5], T4(e2) ∈ [4, 7],
T4(e1) ≤ T4(e2)}.

We need to introduce some auxiliary notions and notations. Let TS be a
timed event structure and TC = (C, T), TC′ = (C′, T ′) ∈ T C(TS). We shall
write TC −→ TC′ iff C ⊆ C′ and T ′|C = T . The restriction of TS to TC,
denoted TS�TC, is defined as (S�C, T).

3 Interleaving Semantics

In this section, we define timed trace, testing and bisimulation equivalences based
on interleaving observations on timed event structures.

For this purpose we need the following notion. Let (Act ×R) be the set of
timed actions.

In the interleaving semantics, a timed event structure TS progresses through
a sequence of timed configurations by occurrences of timed actions. In a timed
configuration TC1 = (C1, T1), the occurrence of a timed action (a, d) leads to a

timed configuration TC2 = (C2, T2) (denoted TC1
(a,d)−→ TC2), if TC1 −→ TC2,

C2 \ C1 = {e}, lTS(e) = a, and T2(e) = d. The leading relation is extended to

a sequence of timed actions from (Act × R)∗ as follows: TC
(a1,d1)−→ · · · (an,dn)−→

TC′ ⇔ TC
(a1,d1)...(an,dn)−→ TC′. The set Lti(TS) = {w ∈ (Act×R)∗ | (∅, ∅) w−→

TC for some TC ∈ T C(TS)} is the ti-language of TS.
Say that timed event structures TS and TS′ are timed interleaving trace

equivalent (denoted TS ≡ti TS′) iff their ti-languages coincide.
Testing equivalences [10] are defined in terms of tests which processes may

and must satisfy. A test is usually itself a process applied to a process by com-
puting both together in parallel. A particular computation is considered to be

20 M.V. Andreeva and I.B. Virbitskaite

successful if the test reaches a designated successful state, and the process guar-
antees the test if every computation is successful. However, following the papers
[2,13], we use an alternative characterization of the testing concept. In timed
interleaving semantics, a test consists of a timed word and a set of timed ac-
tions. A timed process passes this test if after every execution of the timed word
the timed actions are inevitable next. Two timed event structures are timed
interleaving testing equivalent, if there is no test which can distinguish them.

Definition 2. Let TS and TS′ be timed event structures. Then,

– for w ∈ (Act ×R)∗ and L ⊂ (Act ×R), TS after w MUST L iff for all
TC ∈ T C(TS) such that (∅, ∅) w→ TC, there exists a timed action (a, d) ∈ L

such that TC
(a,d)→ TC′ for some TC′ ∈ T C(TS),

– TS and TS′ are timed interleaving testing equivalent (denoted TS ∼ti TS′)
iff for all w ∈ (Act×R)∗ and L ⊂ (Act×R) holds: TS after w MUST L⇐⇒
TS′ after w MUST L.

Further, consider the definition of timed interleaving bisimulation in the set-
ting of timed event structures. We shall say that two timed event structures
are timed interleaving bisimilar, if there exists a relation between their bisim-
ilar timed configurations, among which the initial ones, such that the timed
configurations obtained by occurring timed actions are also timed interleaving
bisimilar.

Definition 3. Timed event structures TS and TS′ are timed interleaving bisim-
ilar (denoted TS↔tiTS′) iff there exists a relation B ⊆ T C(TS)×T C(TS′) sat-
isfying the following conditions: ((∅, ∅), (∅, ∅)) ∈ B and for all (TC, TC′) ∈ B it
holds:

(a) if TC
(a,d)−→ TC1 in TS, then TC′ (a,d)−→ TC′

1 in TS′ and (TC1, TC′
1) ∈ B for

some TC′
1 ∈ T C(TS′),

(b) symmetric to item (a).

TS1

[0,1]

a

�
b

[0,2]

	≡ti

TS2

[0,1]

a

�
b

[0,2]

#

[0,0]

b

�
a

[0,0]

≡ti

	∼ti

TS3

[0,2]

b

b
[0,0]

�

�

[0,1]

a

#

a
[0,0]

�

�

#

#

#

�

�

[0,0]

b

#

a
[0,0]

�

�

[0,0]

a

b
[0,1]

∼ti

	↔ti

TS4

[0,2]

b

b
[0,0]

�

�

[0,1]

a

#

a
[0,0]

�

#

#

�

[0,0]

b �
[0,0]

a

↔ti

	≡tp

TS5

[0,1]

a

�
b

[0,2]

�

#

#

�

[0,0]

a

b
[0,0]

Fig. 2.

Timed Equivalences for Timed Event Structures 21

Example 2. Consider the timed event structures shown in Fig. 2. We have
TS2 ≡ti TS3, while TS1
≡ti TS2, since, for example, (b, 0)(a, 0) ∈ Lti(TS2) but
(b, 0)(a, 0)
∈ Lti(TS1). Next, we get TS3 ∼ti TS4, while TS2
∼ti TS3, because,
for instance, TS2 after (a, 0) MUST {(b, 1)} but ¬(TS3 after (a, 0) MUST
{(b, 1)}). Further, we have TS4↔tiTS5 but TS3
↔ti TS4, since, for instance, the
timed configuration TC of TS3 containing the lower right timed action (a, 0) can
not be related neither to the configuration TC′ of TS4 containing the lower left
timed action (a, 0) nor to the configuration TC′′ of TS4 containing the upper left
timed action (a, 0), because, on one hand, in TC the execution of timed action
(b, 1) is possible, but it is not the case in TC′, and on the other hand, in TC′′

the execution of timed action (b, 2) is possible, but it is not the case in TC.

4 Causal Tree Semantics

The second semantics we use for the definition of timed equivalences are timed
causal trees which are a timed extension of causal trees [9]. Causal trees are in
turn synchronisation trees [17] which carry in their labels additional information
about causes of actions, thus providing us with an interleaving description of
timed concurrent processes which faithfully expresses causality.

We start with defining some needed notions and notations. A timed causal
tree over (Act × R), TCT , is a tree (N, A, φ) where N is the set of nodes,
A ⊆ N ×N is the set of arcs, φ : A −→ (Act×R× 2N) is the labelling function.
The labelling function is extended to paths in a timed causal tree in a standard
way. From now on, we shall use the set P(TCT) = {φ(u) ∈ (Act×R× 2N)∗ | u
is a path in a timed causal tree TCT starting from its root}.

We are ready to provide the definitions of equivalences on timed causal trees.
First, consider the definition of trace equivalence on timed causal trees. Timed

causal trees TCT1 and TCT2 are timed trace equivalent (denoted TCT1 ≡ TCT2)
iff P(TCT1) = P(TCT2).

Second, the definition of testing on timed causal trees is developed. An un-
timed version of the notion was proposed in [13]. For our purpose, we adapt timed
interleaving testing to timed causal trees, that is, the tests consist of words over
and subsets of (Act×R× 2N) instead of (Act×R).

Definition 4. Let TCT1 and TCT2 be timed causal trees, w ∈ (Act×R×2N)∗,
and L ⊂ (Act×R× 2N). Then,

– TCT1 after w MUST L iff for all paths u in TCT1 from its root to a node
n such that φ1(u) = w, there exists a label (a, d, K) ∈ L and an arc r starting
from n such that φ1(r) = (a, d, K),

– TCT1 and TCT2 are timed testing equivalent (denoted TCT1 ∼ TCT2) iff for
all w ∈ (Act×R×2N)∗ and L ⊂ (Act×R×2N), TCT1 after w MUST L⇐⇒
TCT2 after w MUST L.

Third, the definition of bisimulation on timed causal trees is proposed.

22 M.V. Andreeva and I.B. Virbitskaite

Definition 5. Timed causal trees TCT1 and TCT2 are timed bisimilar (denoted
TCT1↔TCT2) iff there exists a relation B ⊆ N1 × N2 satisfying the following
conditions: the roots of the trees belong to B and for all (n1, n2) ∈ B it holds:

(a) if there exists an arc, labelled by (a, d, K), from the node n1 to a node n′
1 in

TCT1, then there exists an arc, labelled by (a, d, K), from the node n2 to a
node n′

2 in TCT2 and (n′
1, n

′
2) ∈ B,

(b) symmetric to item (a).

Before introducing the notion of the timed causal tree of a timed event struc-
ture, we need some auxiliary notions and notations. A timed trace of a timed
event structure TS is a word σ = (e1, d1) . . . (en, dn) such that it holds: (i)
TCσ = (C, T) (with C = {e1, . . . , en} and T (ei) = di), 1 ≤ i ≤ n) is a timed
configuration of TS, (ii) ei
= ej for all i, j (i
= j), (iii) ei <TS ej implies i < j
for all i, j. Hence a timed trace is a causal linearization of a timed configuration.
We use T T (TS) to denote the set of timed traces of TS. The length of a timed
trace σ is denoted by |σ|.

In the timed causal tree of a timed event structure TS, the nodes are simply
the timed traces of TS and an arc exists between two timed traces if the second
one is an extension of the first one. The causes in the labels of the arc have to
be computed from the causality relation of TS.

Definition 6. Let TS = (S, D) be a timed event structure. The timed causal
tree of TS, TCT (TS), is the tree (T T (TS), A, φ) such that A = {(σ, σ(e, d)) |
σ, σ(e, d) ∈ T T (TS)}, φ((σ, σ(e, d))) = (lTS(e), d, K) where K = {|σ2| + 1 |
∃e′ <TS e, and σ1, σ2 s.t. σ = σ1(e′, d′)σ2 for some d′}.

Example 3. Consider the timed event structures, shown in Fig. 2 and 3. First, we
have TCT (TS6) ≡ TCT (TS7), while TCT (TS4)
≡ TCT (TS5), since, for exam-
ple, (a, 0, ∅)(b, 0, ∅) ∈ P(TCT (TS5)) but (a, 0, ∅)(b, 0, ∅)
∈ P(TCT (TS4)). Sec-
ond, we get TCT (TS7) ∼ TCT (TS8), but TCT (TS6)
∼tp TCT (TS7), because,
for instance, TCT (TS6) after (a, 1, ∅) MUST {(b, 1, {1})} but ¬(TCT (TS7)
after (a, 1, ∅) MUST {(b, 1, {1})}). Third, we have TCT (TS8) ↔ TCT (TS9),
but TCT (TS7)
↔ TCT (TS8), because, for instance, in TCT (TS8) there are
arcs, labelled by (b, 1, {1}) and (b, 1, {2}), starting from a node reached by the
path, labelled by (a, 1, ∅)(a, 1, ∅), but it is not the case in TCT (TS7).

TS6 TS7 TS8 TS9≡tp

	∼tp

∼tp

	↔thp

	↔ti

↔thp

b

a

[1, 3]

[1, 3]

�
b

a

[1, 3]

[1, 3]

�
b

a

[1, 3]

[1, 3]

a

[1, 3]

�
b

a

[1, 3]

[1, 3]

�
b

a

[1, 3]

[1, 3]

�
#

a

[1, 3]

#
��� ���#

a

[1, 3]

#

b

a

[1, 3]

[1, 3]

�
b

a

[1, 3]

[1, 3]

�
#

a

[1, 3]

#

Fig. 3.

Timed Equivalences for Timed Event Structures 23

5 Partial Order Semantics

In this section, we consider several definitions of timed equivalence notions based
on timed partial orders.

The partial order semantics of timed event structures is defined by means of
timed pomsets. A timed pomset is a (labelled) timed event structure TP = (E, ≤,
#, l, Eot, Lot) with # = ∅ and Eot(e) = Lot(e), for all e ∈ E. We use T Pom to
indicate the set of timed finite pomsets. The empty timed pomset is (∅, ∅, ∅, ∅, ∅).
The set Ltp(TS) = {TP ∈ T Pom | TP � TS�TC for some TC ∈ T C(TS)} is
the tp-language of TS.

Using tp-languages we obtain timed pomset trace equivalence, i.e., two timed
event structures TS and TS′ are timed pomset trace equivalent (denoted TS ≡tp

TS′) iff their tp-languages coincide.
Next, the definition of timed pomset testing which is a timed extension of

causal testing defined in [13], is developed. For this purpose, we will use the
following notion. For two timed pomsets TP and TP ′, TP is a direct prefix of TP ′

(denoted TP ≺ TP ′) if ETP ⊆ ETP ′ , ETP ′ \ETP = {e′}, e′ is a maximal element
of ETP ′ , ≤TP ′ |ETP ×ETP =≤TP , lTP ′ |ET P = lTP , and EotTP ′ |ET P = EotTP ,
∀e ∈ ETP ′ � e ≤TP ′ e′ ⇒ EotTP ′(e) ≤ EotTP ′(e′).

Definition 7. Let TS and TS′ be timed event structures. Then,

– for TP ∈ T Pom and a set of pomsets TP′ such that ∀TP ′ ∈ TP′ �

TP ≺ TP ′, TS after TP MUST TP′ iff for all TC ∈ T C(TS) such that
TS�TC � TP and for all isomorphisms f : TS�TC −→ TP there exists
TP ′ ∈ TP′, TC′ ∈ T C(TS), and f ′ : TS�TC′ −→ TP ′ such that f ′ is an
isomorphism and f ⊆ f ′,

– TS and TS′ are timed pomset testing equivalent (denoted TS ∼tp TS′)
iff for all TP and for all TP′ it holds: TS after TP MUST TP′ ⇐⇒
TS′ after TP MUST TP′.

Further, we define timed extensions of history preserving bisimulation [12].
It is well-known that the equivalence is the culminating point of the pomset
bisimulation approach.

Definition 8. Timed event structures TS and TS′ are timed history preserving
bisimilar (denoted TS↔thpTS′) if there exists a relation B consisting of triples
(TC, f, TC′), where TC is a timed configuration of TS, TC′ is a timed con-
figuration of TS′, and f : TS�TC → TS′�TC′ is an isomorphism, such that
((∅, ∅), ∅, (∅, ∅)) ∈ B and for all (TC, f, TC′) ∈ B it holds:

(a) if TC −→ TC1 in TS, then TC′ −→ TC′
1 in TS′ and (TC1, f1, TC′

1) ∈ B
with f ⊆ f1, for some TC′

1 and f1,
(b) symmetric to item (a).

Example 4. Consider the timed event structures, shown in Fig. 2 and 3. First,

we have TS6 ≡tp TS7, while TS4
≡tp TS5, since, for example,
[0,0]
a

[0,0]

b

∈ Ltp(TS5)

24 M.V. Andreeva and I.B. Virbitskaite

and
[0,0]
a

[0,0]

b

∈ Ltp(TS4). Second, we get TS7 ∼tp TS8, but TS6
∼tp TS7, because,

for instance, TS6 after
[1,1]
a MUST {

[1,1]
a →

[1,1]

b } and ¬(TS7 after
[1,1]
a MUST

{
[1,1]
a →

[1,1]

b }). Third, we have TS8↔thpTS9, but TS7
↔thpTS8, because, for in-
stance, the timed configurations of TS8, obtained first by the execution of the
medium timed action (a, 3), and then by the execution of the left timed action
(a, 1), can be related only to the timed configurations of TS7 obtained first by
the execution of the left timed action (a, 3) and then by the execution of the
right timed action (a, 1), respectively, however the execution of the timed action
(b, 1) is further possible in TC8, but it is not the case in TC7. Moreover, this
means that TS7
↔tiTS8.

As was shown in [1,13], pomset testing and history preserving bisimulation
coincide with testing and bisimulation on causal trees, respectively, in the setting
of event structures. We extend the results to timed versions of the equivalences.

Theorem 1. Let TS and TS′ be timed event structures. Then,

(i) TS ≡tp TS′ ⇐⇒ TCT (TS) ≡ TCT (TS′).
(ii) TS ∼tp TS′ ⇐⇒ TCT (TS) ∼ TCT (TS′).
(iii) TS↔thpTS′ ⇐⇒ TCT (TS)↔TCT (TS′).

6 Comparison of Equivalences

The common framework used to define different observational equivalences allow
us to study the relationships between the induced semantics. The theorems we
state in the section are a step towards a better understanding of the interrelations
between interleaving and partial order (also, causal tree) semantics. In particular,
we will give the hierarchy for the equivalences and will establish that some of
them coincide on special subclasses of timed event structures.

Theorem 2. Let TS and TS′ be timed event structures. Then,

(i) TS ≡ti TS′ ⇐ TS ≡tp TS′,
(ii) TS ∼ti TS′ ⇐ TS ∼tp TS′,
(ii) TS↔tiTS′ ⇐ TS↔thpTS′.

Theorem 3. Let TS and TS′ be timed event structures. Then,

(i) TS ≡ti TS′ ⇐ TS ∼ti TS′ ⇐ TS↔tiTS′,
(ii) TS ≡tp TS′ ⇐ TS ∼tp TS′ ⇐ TS↔thpTS′.

The timed event structures in Fig. 2, 3 show that the converse implications
of the above theorems do not hold and that the six equivalences are all different.

Now one can ask the obvious question what happens with all these equiv-
alences if we restrict ourselves to some subclasses of the model under consid-
eration. A timed event structure TS = (S = (E,≤, #, l), Eot, Lot) is called

Timed Equivalences for Timed Event Structures 25

sequential, if �S= ∅; TS is deterministic, if e �S e′ or e#1
Se′ ⇒ l(e)
= l(e′)

or [Eot(e), Lot(e)] ∩ [Eot(e′), Lot(e′)] = ∅.
The next theorem shows that if we only consider timed event structures

which represent timed sequential processes then the interleaving and partial
order semantics of the timed equivalences defined coincide.

Theorem 4. Let TS and TS′ be timed sequential event structures. Then,

(i) TS ≡ti TS′ ⇒ TS ≡tp TS′,
(ii) TS ∼ti TS′ ⇒ TS ∼tp TS′,
(ii) TS↔tiTS′ ⇒ TS↔thpTS′.

The theorem below establishes that if we only consider timed event structures
which represent timed deterministic processes then there is no difference between
the timed equivalences of linear time – branching time spectrum.

Theorem 5. Let TS and TS′ be timed deterministic event structures. Then,

(i) TS ≡ti TS′ ⇒ TS ∼ti TS′ ⇒ TS↔tiTS′,
(ii) TS ≡tp TS′ ⇒ TS ∼tp TS′ ⇒ TS↔thpTS′.

7 Conclusion

In this paper, we have given a flexible abstract mechanism, based on observa-
tional equivalences which allows us to consider timed event structures as the
basis of different approaches to the description of the semantics of concurrent
and real-time systems. The results obtained show that the semantics proposed
in general provide formal tools with an discriminative power. Furthermore, when
dealing with particular subclasses of the model there is no difference between a
more concrete or a more abstract approach.

In a future work, we plan to extend the obtained results to other observational
equivalences (e.g., equivalences taking into account internal actions, etc.) and to
other classes of timed event structures (e.g. timed stable event structures, timed
local event structures, etc.). Some investigation on the development of timed
event structure semantics of timed Petri nets are now under way, and we plan
to report on this work elsewhere.

References

1. Aceto, L.: History Preserving, Causal and Mixed-ordering Equivalence over Stable
Event Structures. Fundamenta Informaticae 17(4) (1992) 319–331

2. Aceto, L., De Nicola, R., Fantechi, A.: Testing Equivalences for Event Structures.
Lecture Notes in Computer Science, Vol. 280. Springer-Verlag, Berlin Heidelberg
New York (1987) 1–20

3. Alur, R., Dill, D.: The Theory of Timed Automata. Theoretical Computer Science
126 (1994) 183–235

26 M.V. Andreeva and I.B. Virbitskaite

4. Alur, R., Henzinger, T.A.: Logics and Models of Real Time: a Survey. Lecture
Notes in Computer Science, Vol. 600 Springer-Verlag, Berlin Heidelberg New York
(1992) 74–106

5. Andreeva, M.V., Bozhenkova, E.N., Virbitskaite, I.B.: Analysis of Timed Con-
current Models Based on Testing Equivalence. Fundamenta Informaticae 43(1-4)
(2000) 1–20

6. Andreeva, M.A., Virbitskaite, I.B.: Timed Equivalences for Timed Event Struc-
tures. Available from http://www.iis.nsk.su/persons/virb/virb.zip

7. Baier, C., Katoen, J.-P., Latella, D.: Metric Semantics for True Concurrent Real
Time. In Proc. 25th Int. Colloquium, ICALP’98, Aalborg, Denmark (1998) 568–579

8. Čerāns, K.: Decidability of Bisimulation Equivalences for Parallel Timer Processes.
Lecture Notes in Computer Science, Vol. 663. Springer-Verlag, Berlin Heidelberg
New York (1993) 302–315

9. Darondeau, Ph., Degano, P.: Causal Trees: Interleaving + Causality. Lecture Notes
in Computer Science, Vol. 469. Springer-Verlag, Berlin Heidelberg New York (1990)
239–255

10. De Nicola, R., Hennessy, M.: Testing Equivalence for Processes. Theoretical Com-
puter Science 34 (1984) 83–133

11. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II: The Seman-
tics of Sequential Systems with Silent Moves. Extended Abstract. Lecture Notes in
Computer Science, Vol. 715. Springer-Verlag, Berlin Heidelberg New York (1993)
66–81

12. van Glabbeek, R.J., Goltz, U.: Equivalence Notions for Concurrent Systems and
Refinement of Actions. Lecture Notes in Computer Science, Vol. 379. Springer-
Verlag, Berlin Heidelberg New York (1989) 237–248

13. Goltz, U., Wehrheim, H.: Causal Testing. Lecture Notes in Computer Science, Vol.
1113. Springer-Verlag, Berlin Heidelberg New York (1996) 394–406

14. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency.
Journal of ACM 32 (1985) 137–162.

15. Hoare C.A.R. Communicating sequential processes. Prentice-Hall, London (1985)
16. Maggiolo-Schettini, A., Winkowski, J.: Towards an Algebra for Timed Behaviours.

Theoretical Computer Science 103 (1992) 335–363
17. Milner, R.: Communication and Concurrency. Prentice-Hall, London (1989)
18. Murphy, D.: Time and Duration in Noninterleaving Concurrency. Fundamenta In-

formaticae 19 (1993) 403–416
19. Steffen, B., Weise, C.: Deciding Testing Equivalence for Real-Time Processes with

Dense Time. Lecture Notes in Computer Science, Vol. 711. Springer-Verlag, Berlin
Heidelberg New York (1993) 703–713

20. Virbitskaite, I.B.: An Observation Semantics for Timed Event Structures. Lecture
Notes in Computer Science, Vol. 2244. Springer-Verlag, Berlin Heidelberg New
York (2001) 215–225

21. Virbitskaite, I.B., Gribovskaya, N.S.: Open Maps and Observational Equivalences
for Timed Partial Order Models. Fundamenta Informaticae 60(1-4) (2004) 383–
399

22. Winskel, G.: An introduction to event structures. Lecture Notes in Computer Sci-
ence, Vol. 354. Springer-Verlag, Berlin Heidelberg New York (1988) 364–397

23. Weise, C., Lenzkes, D.: Efficient Scaling-Invariant Checking of Timed Bisimulation.
Lecture Notes in Computer Science, Vol. 1200. Springer-Verlag, Berlin Heidelberg
New York (1997) 176–188

Similarity of Generalized Resources

in Petri Nets�

Vladimir A. Bashkin1 and Irina A. Lomazova2

1 Yaroslavl State University,
Yaroslavl, 150000, Russia

bas@uniyar.ac.ru
2 Program Systems Institute of the Russian Academy of Science,

Pereslavl-Zalessky, 152020, Russia
irina@lomazova.pereslavl.ru

Abstract. Generalized resources are defined as multisets of Petri net
vertices. Here places represent material resources (designated by tokens
residing in these places). Transitions correspond to activity resources
represented by transition firings. Two generalized resources are called
similar if in any Petri net marking one resource can be replaced by
another without changing the observable system’s behaviour (modulo
bisimulation). In this paper we study some basic properties of generalized
resource similarity and prove that, being undecidable, generalized resour-
ce similarity is finitely based, and thus can be finitely described. We show
also, that similarity of generalized resources allows to express some sub-
stantial properties of systems modelled by Petri nets.

1 Introduction

Petri nets is a well-known formalism of less than Turing power. It is suited
for modelling parallel and distributed systems, such as protocol specifications,
distributed algorithms and workflows. Petri nets offer a wide range of modelling
primitives: sequential and parallel composition, choice, accumulation, expressed
in a clear graphical notation.

The notion of bisimulation equivalence was introduced by Milner and Park.
It captures the notion of observable system behaviour. Bisimulation equivalence
is a binary relation on system states (Petri net markings). Two states are bisim-
ilar, if an external observer (who sees only transition firings) cannot distinguish
them.

For ordinary Petri nets the marking bisimulation is undecidable [6]. A more
weak place bisimulation for ordinary Petri nets was studied in [1]. Place bisi-
mulation is a binary relation on Petri net places. Two places in a Petri net are
bisimilar, if replacing a token in one place by a token in another one in any

� This research was partly supported by the Russian Foundation for Basic Research
(Grant 03-01-00804) and by the Presidium of the Russian Academy of Science, pro-
gram “Intellectual computer systems”, project 2.3.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 27–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 V.A. Bashkin and I.A. Lomazova

marking doesn’t change the system behaviour. Place bisimulation is decidable.
It can be used for reducing Petri nets by place fusion.

In [3] multisets of places were considered as system resources generating this
or that net’s behavior, and the relation of resource similarity was defined. Two
resources are called similar if changing one resource by another in any marking
can’t be noticed by an external observer. The relation of resource similarity has a
very natural interpretation and can be useful for analysis resource dependencies
in modelled systems. It can be used also for net reduction. Resource similarities
are undecidable, but they are closed under transitivity and addition of resources.
Moreover, each resource similarity has a finite basis under transitivity and addi-
tion. Being undecidable, resource similarity can be in a certain sense “approxima-
ted” the by a stronger relation of a resource bisimulation [3]. In [4] conditional
resource similarity was investigated. Two resources are called similar under a
certain condition if one of them can be replaced by another without changing an
observable behavior provided that a comprehending marking contains also some
additional resources.

In many resource-dependent systems, such as e. g. workflow systems, stuff and
devices, which deal with other resources, are changeable and can be considered
as resources themselves. So, in this paper we introduce the notion of generali-
zed resource. It includes not only statical but also dynamical components. Ge-
neralized resource is a pair of multisets: a multiset of places and a multiset
of transitions. A multiset of places defines a material resource, a multiset of
transition defines an activity resource.

Then we define the relation of similarity for generalized resources. Two gen-
eralized resources are similar, if in any state of the system we can replace tokens
and firings of one of them by tokens and firings of another without changing
the observable system behaviour. Here we suppose all transitions in the activity
part of the resource to fire independently (in one parallel step).

This new kind of similarity allows to express some interesting properties of
system components. The novelty is in the possibility to examine not only the
static part of a Petri net (places and markings), but also it’s active components
(transitions and firings). Thus, for example, it allows to formalize the notions of
“comparative effectiveness” and “equivalence under condition” for two multisets
of events (transition firings). At the same time, generalized resource similarity
is a natural extension of the resource similarity relation defined in [3]. Hence it
allows to express all static resource properties such as “resource sufficiency” or
“resource redundancy” as well.

In this paper we study basic properties of a generalized resource similarity.
It is shown that a generalized resource similarity is an equivalence relation, and
that it is closed under addition of pairs of generalized resources and under two
specific operations — parallel step removal and parallel step addition. The set
of all pairs of similar generalized resources is semilinear. We describe a special
finite basis of a generalized resource similarity. It is also proven that a general-
ized resource similarity is a generalization of a resource similarity [3] and hence
is undecidable.

Similarity of Generalized Resources in Petri Nets 29

2 Preliminaries

Let S be a finite set. A multiset m over a set S is a mapping m : S → Nat,
where Nat is the set of natural numbers (including zero), i. e. a multiset may
contain several copies of the same element.

For two multisets m, m′ we write m ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the
inclusion relation). The sum and the union of two multisets m and m′ are defined
as usual: ∀s ∈ S : m + m′(s) = m(s) + m′(s), m ∪m′(s) = max(m(s), m′(s)).
By M(S) we denote the set of all finite multisets over S.

Non-negative integer vectors are often used to encode multisets. Actually,
the set of all multisets over finite S is a homomorphic image of Nat|S|. A binary
relation R ⊆ Natk × Natk is a congruence if it is an equivalence relation and
whenever (v, w) ∈ R, then (v + u, w + u) ∈ R (here ‘+’ denotes coordinate-
wise addition). It was proved by L. Redei [7] that every congruence on Natk

is generated by a finite set of pairs. Later P. Jančar [6] and J. Hirshfeld [5]
presented a shorter proof and also showed that every congruence on Natk is a
semilinear relation, i. e. it is a finite union of linear sets.

Let P and T be disjoint sets of places and transitions and let F : (P ×
T) ∪ (T × P) → Nat. Then N = (P, T, F) is a Petri net. A marking in a Petri
net is a function M : P → Nat, mapping each place to some natural number
(possibly zero). Thus a marking may be considered as a multiset over the set of
places. Pictorially, P -elements are represented by circles, T -elements by boxes,
and the flow relation F by directed arcs. Places may carry tokens represented
by filled circles. A current marking M is designated by putting M(p) tokens into
each place p ∈ P . Tokens residing in a place are often interpreted as resources
of some type consumed or produced by a transition firing. A simple example,
where tokens represent molecules of hydrogen, oxygen and water respectively is
shown in Fig. 1.

��
��

��
��

��
��

�

�� ��

� �

�� �

H2

O2

H2O
��
��

��
��

��
��

�

�� ��
H2

O2

H2O

� �

� �
=⇒

Fig. 1. A chemical reaction

For a transition t ∈ T an arc (x, t) is called an input arc, and an arc (t, x)
— an output arc; the preset •t and the postset t• are defined as the multisets
over P such that •t(p) = F (p, t) and t•(p) = F (t, p) for each p ∈ P . A transition
t ∈ T is enabled in a marking M iff ∀p ∈ P M(p) ≥ F (p, t). An enabled
transition t may fire yielding a new marking M ′ =def M − •t + t•, i.e. M ′(p) =
M(p)− F (p, t) + F (t, p) for each p ∈ P (denoted M

t→M ′).

30 V.A. Bashkin and I.A. Lomazova

The transitions may fire in parallel (concurrently), if there are enough tokens
for all of them. In particular, the transition may fire in parallel with itself.
The concurrent firing of the multiset of transitions is called a parallel step. The
precondition and postcondition for the multiset of transitions α ∈ M(T) are:

•α =def

∑
t∈α

•t, α• =def

∑
t∈α

t•.

Note that if transition t occurs n times in α then its precondition •t occurs
n times in •α. Obviously,

•(α + β) = •α + •β, (α + β)• = α• + β•.

To observe a net behavior transitions are marked by special labels represen-
ting observable actions or events. Let Act be a set of action names. A labelled
Petri net is a tuple N = (P, T, F, l), where (P, T, F) is a Petri net and l : T → Act
is a labelling function. It can be generalized to multisets:

for α ∈M(T) l(α) =def

∑
t∈α l(t).

Again, we use not a union but a sum of multisets.
Let N = (P, T, F, l) be a labelled Petri net. We say that a relation R ⊆

M(P) × M(P) conforms the transfer property iff for all (M1, M2) ∈ R and
for every step t ∈ T , s.t. M1

t→ M ′
1, there exists an imitating step u ∈ T ,

s.t. l(t) = l(u), M2
u→ M ′

2 and (M ′
1, M

′
2) ∈ R. The transfer property can be

represented by the following diagram:

M1 ∼ M2

↓ t ↓ (∃)u, l(u) = l(t)

M ′
1 ∼ M ′

2

A relation R is called a marking bisimulation, if both R and R−1 conform the
transfer property.

For every labelled Petri net there exists the largest marking bisimulation
(denoted by ∼) and this bisimulation is an equivalence. It was proved by P. Jan-
čar [6], that the marking bisimulation is undecidable for Petri nets.

3 Similarity of Generalized Resources

Definition 1. Let N = (P, T, F, l) be a labelled Petri net. A pair (r, α) s. t.
r ∈M(P), α ∈M(T) and •α ⊆ r is called a generalized resource of a Petri net
N .

The set of all generalized resources of N is denoted by Φ(N).

Similarity of Generalized Resources in Petri Nets 31

In other words, a generalized resource can be considered as a multiset over
the set P ∪ T of vertices in Petri net graph. But we prefer to use the syntax
(r, α) since for syntactical reasons it is more convenient to separate places and
transitions explicitly.

So, the generalized resource (r, α) consists of two distinguished parts — a
multiset of places r and a multiset of transitions α. We will call r a material
resource and α an activity resource. The material part describes the availability
of raw materials (tokens in Petri nets) and the activity part describes the possi-
bility of tool usage (transition firings). Since we consider not sets but multisets,
both tools and materials may have quantity.

The requirement of well-foundedness •α ⊆ r is very natural and guarantees
that materials utilized by activity part are always included into material part.

Note that by definition •α contains enough tokens for parallel firing of all
transitions in α. Hence α can be always considered as a parallel step. We consider
only parallel firings of transitions constituting the activity part of a resource.

Generalized resources can be interchangeable:

Definition 2. Generalized resources (r, α) and (s, β) are called similar (denoted
by (r, α) ≈ (s, β)) if

1. l(α) = l(β);
2. for every marking M ∈ M(P) and parallel step M + r

α→ M ′ we have

M + s
β→M ′′ with M ′ ∼ M ′′.

Thus if two generalized resources are similar, then in every marking each
of these resources can be replaced by another without changing the observable
system behavior. The replacement of material parts means just replacement of
corresponding tokens. The replacement of activity parts means determined firing
of β instead of α.

The generalized resource similarity has natural interpretation. For example,
it may express the possibility of replacement of one employee (making some work
defined by a multiset of transitions) by another employee (another multiset of
transitions), but only provided we replace also some tokens (raw materials at the
store and salary on the employee’s account) by another multiset of tokens. In this
case the money and the raw materials are material resources, and the employees
are activity resources. Different employees consume and produce different mate-
rial resources.

Note that this replacement doesn’t actually replace transitions in the net’s
graph. The structure of the net remains the same. We just replace the occurrences
of transitions in the net’s behaviour. The first employee is not fired, it is just
substituted by the second for this certain work. Later he/she may carry out this
kind of work himself/herself again.

Some examples of similar generalized resources are shown in Fig. 2.
Generalized resource similarity may capture a number of interesting facts

about the system. Some of them are shown in Fig. 3.

32 V.A. Bashkin and I.A. Lomazova

��
��

b

a

			�

�p1

t1

t2

��
��

a

			�

�p2

t3

��
��			�

p3

��
��

�

�
���

p5

��
��

�

p4

��
��

�

p6

b
��

t4

(p1 + p2 + p6, t2) ≈ (p2 + p3, t3)

(p1, t1) ≈ (p1 + p4, t1)

(p5, t4) ≈ (2p5, t4)

(p4, ∅) ≈ (p6, ∅)

Fig. 2. Examples of similar generalized resources

(r, α) ≈ (s, β) Generalized resources (r, α) and (s, β) are inter-
changeable in any state of the system.

(r, α) ≈ (r, β) Activities α and β are equivalent in any state of
the system, containing context r.

(r, α) ≈ (s, α) Materials r and s are equivalent if the system nec-
essarily executes α.

(r, α) ≈ (r + s, β) Activity α is more effective than β.
(r, α) ≈ (r + s, α) Material s is removable if the system necessarily

executes α.
(r, ∅) ≈ (r + s, ∅) A material s is redundant.

4 Properties of Generalized Resource Similarity

The generalized resource similarity has some nice properties. First of all, it is an
equivalence:

Proposition 1. Let (r, α), (s, β), (u, γ) ∈ Φ(N). Then

1. (r, α) ≈ (r, α);
2. (r, α) ≈ (s, β) ⇒ (s, β) ≈ (r, α);
3. (r, α) ≈ (s, β) & (s, β) ≈ (u, γ) ⇒ (r, α) ≈ (u, γ).

Proof. 1) From the definition.
2) Since the largest marking bisimulation ∼ is closed under the symmetry.
3) Since the largest marking bisimulation ∼ is closed under the transitivity. ��

The simplest nontrivial similar pairs can be generated by:

Proposition 2. Let α, β ∈M(T). Then

l(α) = l(β) ⇒ (•α + β•, α) ≈ (•β + α•, β).

Proof. From the definition. ��

Similarity of Generalized Resources in Petri Nets 33

a

t3

��
��

p4

��
��

p5

� � c

t4

��
��

p6

� �

a

t1

��
��

p1

��
��

p2

� � b

t2

��
��

p3

� �

(p1 + p5, t1) ≈ (p2 + p4, t3)
(p3, ∅) ≈ (p6, ∅)

a) interchangeable resources;

��
��

p1

� �� ��
���a a

t1 t2

(p1, t1) 	≈ (p1, t2)
(2p1, t1) ≈ (2p1, t2)

b) equivalent activities;

a

t1

��
��

p1

��
��

p2

� � b

t2

�� (p1, ∅) 	≈ (p1 + p2, ∅)
(p1, t1) ≈ (p1 + p2, t1)

c) equivalent materials;

a

t2

��
��

p3

�

a

t1

��
��

p1

��
��

p2

�

�
���

�

�
�

�
���

(p1, t1) ≈ (p1 + p2, t2)

d) more effective activity;

��
��

p1

� ��a

t1

(p1, t1) ≈ (2p1, t1)
(p1, ∅) ≈ (2p1, ∅)
(∅, ∅) 	≈ (p1, ∅)

e) removable and redundant materials.

Fig. 3. Properties exposured by a generalized resource similarity

Generalized resource similarity is closed under the removal of a parallel step:

Proposition 3. Let (r, α), (s, β) ∈ Φ(N), γ, δ ∈ M(T). Then

(r, α) ≈ (s, β) & l(γ) = l(δ) & γ ⊆ α & δ ⊆ β ⇒
⇒ (r − •γ + γ•, α− γ) ≈ (s− •δ + δ•, β − δ).

Proof. Assume the converse: (r − •γ + γ•, α− γ)
≈ (s− •δ + δ•, β − δ).

34 V.A. Bashkin and I.A. Lomazova

First, note that (r − •γ + γ•, α− γ) and (s− •δ + δ•, β − δ) are well-formed
generalized resources, since •(α−γ) ⊆ (r− •γ +γ•) and •(β− δ) ⊆ (s− •δ + δ•).
From (r, α) ≈ (s, β) and l(γ) = l(δ) we have l(α− γ) = l(β − δ).

Hence, the multisets of transitions α− γ and β − δ may fire in parallel from
the corresponding material resources and from any bigger markings.

So, our assumption implies that for some marking M ∈ M(P) and parallel
steps

M + (r − •γ + γ•)
α−γ→ M ′ (1)

and
M + (s− •δ + δ•)

β−δ→ M ′′

holds M ′
∼ M ′′.
Consider α and r. From the condition γ ⊆ α we have α = γ + γ′. From the

conditions •α ⊆ r and γ ⊆ α we have

r = •γ + •γ′ + r′. (2)

Applying (2) the step (1) can be rewritten as

M + (r − •γ + γ•) = M + γ• + •γ′ + r′
γ′
→M + γ• + γ′• + r′.

Hence M ′ = M + γ• + γ′• + r′. Similarly we get β = δ + δ′, s = •δ + •δ′ + s′

for some s′ and M ′′ = M + δ• + δ′• + s′.
The generalized resource similarity (r, α) ≈ (s, β) implies

M + r
α→ G′, M + s

β→ G′′,

G′ ∼ G′′. (3)

Applying (2) we can rewrite the firing M + r
α→ G′ as

M + r = M + •γ + •γ′ + r′
γ+γ′
→ G′ = M + γ• + γ′• + r′.

Hence G′ = M ′. Similarly G′′ = M ′′. Therefore, we get contradiction between
(3) and the assumption M ′
∼ M ′′. ��

Note that this is not a subtraction since we subtract only the activity com-
ponent. The material component is not subtracted, it is transformed according
to the step properties.

Generalized resource similarity is closed under the addition of a parallel step:

Proposition 4. Let (r, α), (s, β) ∈ Φ(N), γ, δ ∈ M(T). Then

(r, α) ≈ (s, β) & l(γ) = l(δ) & γ• ⊆ (r − •α) & δ• ⊆ (s− •β) ⇒
⇒ (r − γ• + •γ, α + γ) ≈ (s− δ• + •δ, β + δ).

Proof. Similarly to the proof of proposition 3. ��

Similarity of Generalized Resources in Petri Nets 35

This is also not a real addition. Again, we add only an activity component.
Material component is not added or removed, it is transformed according to the
step properties.

However, we can add both components at once. The generalized resource
similarity is closed under the addition of pairs of resources:

Proposition 5. Let (r, α), (s, β), (u, γ), (v, δ) ∈ Φ(N). Then

(r, α) ≈ (s, β) & (u, γ) ≈ (v, δ) ⇒ (r + u, α + γ) ≈ (s + v, β + δ).

Proof. Assume the converse: (r + u, α + γ)
≈ (s + v, β + δ).
Reasoning as in the beginning of the proof of proposition 3, the assumption

implies that for some marking M ∈ M(P) and parallel steps M + r + u
α+γ→ M ′

and M + s + v
β+δ→ M ′′ holds M ′
∼ M ′′.

Consider (r, α). Since •α ⊆ r, we have

r
α→ (r − •α + α•).

Denote the multiset of places r − •α + α• by a primed letter r′. Similarly,
denote the postsets of (s, β), (u, γ) and (v, δ) by primed letters s′, u′ and v′ :

r
α→ r′, s

β→ s′, u
γ→ u′, v

δ→ v′.

Obviously, we have M ′ = M + r′ + u′ and M ′′ = M + s′ + v′ and hence the
assumption can be rewritten as:

M + r′ + u′
∼M + s′ + v′. (4)

Consider G = M + r′. From (u, γ) ≈ (v, δ) we have

G + u
γ→ G + u′, G + v

δ→ G + v′,

G + u′ ∼ G + v′. (5)

Consider H = M + v′. From (r, α) ≈ (s, β) we have

H + r
α→ H + r′, H + s

β→ H + s′,

H + r′ ∼ H + s′. (6)

Bisimilarities (5) and (6) can be rewritten:

(M + r′) + u′ ∼ (M + r′) + v′, (M + v′) + r′ ∼ (M + v′) + s′.

Since the largest marking bisimulation ∼ is closed under the transitivity and
the addition of multisets is commutative and associative we get

M + r′ + u′ ∼M + s′ + v′,

that contradicts to (4). ��

36 V.A. Bashkin and I.A. Lomazova

Note 1. The generalized resource similarity is not closed under the subtraction of
pairs of resources. In particular, the subtraction may affect the well-foundedness
of a resource.

From proposition 5 we get

Corollary 1. The generalized resource similarity is a congruence.

It was proved by L. Redei [7] that every congruence on the set of vectors
Natk is generated by a finite set of pairs. Later P. Jančar [6] and J. Hirshfeld [5]
presented a shorter proof and also showed that every congruence on Natk is a
semilinear relation (modulo coordinate-wise addition), i. e. it is a finite union of
linear sets.

Since the set of generalized resources Φ(N) can be considered as a subset of
Natk with k = |P |+ |T |, and the multiset addition coincides with the coordinate-
wise vector addition, we immediately have

Corollary 2. The generalized resource similarity is semilinear.

Here we propose a description of a simple finite basis for ≈ (not semilinear).
Consider a finite set P and a congruence B over a set M(P)×M(P) of

pairs of finite multisets over P. Since B is a congruence, there must be a finite
representation of B ([7]).

It was proved [3], that a finite basis of B can be described as follows.
Define a partial order on the set B ⊆M(P)×M(P) of pairs of multisets:

for “loop” pairs let
(r1, r1) (r2, r2)

def⇔ r1 ⊆ r2;

for “non-loop” pairs “loop” and nonintersecting addend components are compa-
red separately

(r1 + o1, r1 + o′1) (r2 + o2, r2 + o′2)
def⇔

def⇔ o1 ∩ o′1 = ∅ & o2 ∩ o′2 = ∅ & r1 ⊆ r2 & o1 ⊆ o2 & o′1 ⊆ o′2.

Note that by this definition reflexive and non-reflexive pairs are incompara-
ble.

Let Bs denote the set of all minimal (w.r.t.) elements of B. Since is a
well-quasi-ordering Bs is finite. We call Bs the ground basis of B.

Let BAT denote the closure of the relation B under the transitivity and the
addition of pairs of multisets.

Theorem 1. [3] Let B ⊆M(P)×M(P) be a symmetric and reflexive relation.
Then (Bs)AT = BAT and Bs is finite.

It is easy to see that for any congruence B we have BAT = B. So, it is
sufficient to deal only with this ground basis.

But in the case of generalized resources the pair (r, α) ≈ (s, β) is constituted
of four distinguished multisets. Moreover, the material and the activity parts are
bounded by the requirement •α ⊆ r. However, the approach still works.

Similarity of Generalized Resources in Petri Nets 37

Define a partial order on the set R ⊆ Φ(N)×Φ(N) of pairs of generalized
resources as a “lifting” of the case M(P)×M(P) :(

(r, α), (s, β)
)

(
(u, γ), (v, δ)

)
def⇔ (r, s) (u, v) & (α, β) (γ, δ).

Similarly, let Rs denote the set of all minimal (w.r.t.) elements of R and
is called the ground basis of R.

So, we compare the material component and the activity components of re-
sources separately. This can be argued by the fact that the operation of a gen-
eralized resource addition, introduced in the statement of proposition 5, also
distinguishes them.

Theorem 2. Let R ⊆ Φ(N)×Φ(N) be a symmetric and reflexive relation. Then
(Rs)AT = RAT and Rs is finite.

The proof is long and technical and is omitted here.

Note 2. The complete relation R is constructed from it’s finite ground basis not
only with the addition, but also with the transitive closure. It is easy to give an
example of a relation that can be generated only by infinitely many transitive
closures of it’s ground basis. Hence, this basis is not semilinear.

Corollary 3. The generalized resource similarity is generated by a finite ground
basis.

5 Material and Activity Resources

There are two particularly interesting sorts of generalized resources.

Definition 3. A generalized resource of the form (r, ∅) is called a material re-
source.

A generalized resource of the form (•α, α) is called an activity resource.

Considering only pairs of similar material resources we obtain an important
equivalence relation — a material resource similarity.

The material resource similarity coincides with the resource similarity, inves-
tigated in [3].

Definition 4. [3] Let N = (P, T, F, l) be a labelled Petri net. A resource r ∈
M(P) in a Petri net N = (P, T, F, l) is a multiset over the set of places P .

Resources r, s ∈ M(P) are called similar (denoted by r ≈ s) iff for every
resource m ∈ M(P) we have m + r ∼ m + s.

The notion of a generalized resource similarity is a generalization of the notion
of a resource similarity, that takes into account not only places (materials), but
also transitions (activities).

It is easy to see that a resource similarity forms a distinguished subset of a
generalized resource similarity:

38 V.A. Bashkin and I.A. Lomazova

Proposition 6. Let r, s ∈ M(P). Then

r ≈ s ⇔ (r, ∅) ≈ (s, ∅).
Proof. From the definitions. ��
So, the set of all pairs of similar material resources coincides with the set of
all pairs of similar resources (modulo notation). All properties of the resource
similarity hold for the material resource similarity. In particular,

Corollary 4. The material resource similarity is an equivalence relation, closed
under the addition.

It was proved in [3] that the resource similarity is undecidable for labelled Petri
nets. Since the basis of the material resource similarity can be easily constructed
from the ground basis of the complete generalized resource similarity, we get

Corollary 5. The generalized resource similarity is undecidable for labelled Pet-
ri nets.

Note 3. So, the generalized resource similarity is not computable in general.
However, for a resource similarity there exist important subsets called resource
bisimulations [3]. The problem whether the largest (w.r.t. inclusion) resource
bisimulation is a proper subset of the resource similarity is still open. More
likely they coincide.

On the other hand, the largest resource bisimulation can be constructively
approximated. Hence it seems that it is very promising to look for some analogue
in the case of generalized resources.

Considering only pairs of similar activity resources we obtain an activity re-
source similarity. It is not as rich as material one. More precisely, it is generated
by a special subset of a material resource similarity:

Proposition 7. Let α, β ∈M(T). Then

(•α, α) ≈ (•β, β) ⇔ (α•, ∅) ≈ (β•, ∅).

Proof.
(⇒) From proposition 3.
(⇐) From proposition 4. ��

This is quite natural — we can exchange “tools” without additional require-
ments if and only if they are “completely” similar i. e. produce equivalent ma-
terial resources.

6 Example

In this section we describe a toy example which demonstrates some possible
applications of similarity relation.

Similarity of Generalized Resources in Petri Nets 39

in1

��
��

p2

b

t2

�

a

t1

�

��
��
p1�

���

�

in2 ��
��

q1

� c

u1

��
��

q2

� �
��
��

q4

a

u5

�

b

u4

�

��
��
q3�

���

� �

�

b

u3

a

u2

in3 ��
��

r1

�
��
��

b

v2

�

r2�
���

�

�

d

v3

a

v1

Sub 1

Sub 2

Sub 3

(p1, ∅) ≈ (q4, ∅), (p2, ∅) ≈ (q3, ∅) ≈ (r2, ∅)

(p1 + p2, ∅) ≈ (q2, ∅) ≈ (q3 + q4, ∅)
(p1, t1) ≈ (q4, u5), (p2, t2) ≈ (q3, u4) ≈ (r2, v2)

(p1 + p2, t1) ≈ (q2, u2) ≈ (q2 + q3, u5) ≈ (r1, v1)

(p1 + p2, t2) ≈ (q2, u3) ≈ (q2 + q3, u4)

Fig. 4. Adaptive request processing

Consider a model of a request processing system shown in Fig. 4. It may be
an organization, a web service or a computational device. The system consists of
three separate modules (departments, servers or processors). Each of them can
handle it’s own type of request. The overall processing is different for different
types of requests but, however, some of operations are identical. Specifically,
there are ”a” and ”b” units in every module. So we want to know how this
similarity may be used for adaptive processing: exchanging requests (resources)
between subsystems for load balancing and exception handling. Of course, the
replacement must not damage the overall system’s behaviour.

The similarity of generalized resources offers a good opportunity for this. In
the presented system we can find a number of similar resources.

The material resource similarity provides a nice set of rules for load balancing.
For example, using the rule (q2, ∅) ≈ (p1 + p2, ∅) one can decrease the load of
subsystem 2 (at the cost of increasing the load of subsystem 1) by removing a

40 V.A. Bashkin and I.A. Lomazova

token from q2 and adding tokens to p1 and p2. (For simplicity we do not examine
here in details the technical process of request transferring.)

The load balancing is basically imposed by some external events or reasons
(load manager etc.). The exception handling is necessary for dealing with internal
problems of the system. Consider a situation where subsystem 3 crushes during
the execution of the task v1 (or is executing it for an unacceptably long time
while other – maybe more powerful – subsystems are standing idle). In this
case the similarity rule (r1, v1) ≈ (p1 + p2, t1) ≈ (q2, u2) permits us to transfer
all the incoming data from Sub 3 to another subsystem (Sub 1 or Sub 2) and
then (transparently for the end user) restart the task. Note that this is not a
”traditional” rollback, since we remember not only the state (marking) of the
system but also the set of chosen activities.

Actually, one can exchange resources and activities not only because of fail-
ures. For example, the activity resource similarity (p1, t1) ≈ (q4, u5) displays the
possibility to remove one of these activities from the system (permanently or
during a hot-swap manipulations).

7 Conclusion

In this paper we presented a notion of generalized resource and a relation of
generalized resource similarity, which allows to exposure behavioural equivalence
between complex resources of a system. These aggregate resources contain both
statical elements (tokens) and dynamical events (transition firings). Hence the
relation of generalized resource similarity can express a wide range of properties
of system components and behaviour.

References

1. Autant, C., Schnoebelen, Ph.: Place bisimulations in Petri nets. In Proc. of
ICATPN’92. Lecture Notes in Computer Science, Vol. 616. Springer-Verlag, Berlin
Heidelberg New York (1992) 45–61

2. Bashkin, V.A., Lomazova, I.A.: Reduction of Coloured Petri nets based on resource
bisimulation. Joint Bulletin of NCC & IIS (Comp. Science), Vol. 13. Novosibirsk,
Russia (2000) 12–17

3. Bashkin, V.A., Lomazova, I.A.: Petri Nets and resource bisimulation. Fundamenta
Informaticae, Vol. 55, Nr. 2. (2003) 101–114

4. Bashkin, V.A., Lomazova, I.A.: Resource similarities in Petri net models of dis-
tributed systems. In Proc. of PACT’2003. Lecture Notes in Computer Science, Vol.
2763. Springer-Verlag, Berlin Heidelberg New York (2003) 35–48

5. Hirshfeld, Y.: Congruences in commutative semigroups. Research report ECS-
LFCS-94-291, Department of Computer Science, University of Edinburgh (1994)

6. Jančar, P.: Decidability questions for bisimilarity of Petri nets and some related
problems. In Proc. of STACS’94. Lecture Notes in Computer Science, Vol. 775.
Springer-Verlag, Berlin Heidelberg New York (1993) 581–592

7. Redei, L.: The theory of finitely generated commutative semigroups. Oxford Uni-
versity Press, New York (1965)

Similarity of Generalized Resources in Petri Nets 41

8. Milner, R.: A Calculus of Communicating Systems. Lecture Notes in Computer
Science, Vol. 92. Springer-Verlag, Berlin Heidelberg New York (1980)

9. Shnoebelen, Ph., Sidorova, N.: Bisimulation and the reduction of Petri nets. In Proc.
of ICATPN’2000. Lecture Notes in Computer Science, Vol. 1825. Springer-Verlag,
Berlin Heidelberg New York (2000) 409–423

Real-Time Event Structures and Scott Domains

R.S. Dubtsov

A.P. Ershov Institute of Informatics Systems,
Siberian Division of the Russian Academy of Sciences,

6, Acad. Lavrentiev avenue, 630090, Novosibirsk, Russia
Phone: +7 3833 30 40 47, Fax: +7 3833 32 34 94

dubtsov@iis.nsk.su

Abstract. Event structures have come to play an important role in the
formal study of the behaviour of distributed systems. The advantage
of event structures is that they explicitly exhibit the interplay between
concurrency and nondeterminism. In [14], it has been shown that event
structures are closely related to Scott domains. The intention of the
paper is to extend Winskel’s approach to a real-time version of event
structures, obtaining a coreflection between categories of the models.

1 Introduction

Category theory has been used to structure the seemingly confusing world of
models for concurrency — see [15] for a survey. The general idea is to formalise
that one model is more expressive than another in terms of an ‘embedding’, most
often taking the form of a coreflection, i.e. an adjunction in which the unit is an
isomorphism.

Event structures have come to play an important role in the formal study of
the behaviour of distributed systems. The advantage of event structures is that
they explicitly exhibit the interplay between concurrency and nondeterminism.
Event structures essentially model processes as sets of events constrained by re-
lations of causal dependency and conflict. On one hand, event structures consist
of relations on events and bear a close relationship to Petri nets. On the other
hand, configurations or states of an event structure naturally reflect information
about which events have occurred and determine a Scott domain of informa-
tion [2]. Thus, dual nature event structures stand as an intermediary between
the theories of Petri nets and denotational semantics, sharing ideas with both.
The facts have been shown by obtaining coreflections between categories of the
models (see [5,11,14] among others).

Recently, the demand for correctness analysis of real-time systems, i.e. sys-
tems whose descriptions involve a quantitative notion of time, increases rapidly.
Much of the theory of untimed systems have been lifted to real-time setting.
Timed extensions of interleaving models have been investigated thoroughly in
the last ten years (see, for instance, [1,6]). On the other hand, the incorpora-
tion of quantitative information into noninterleaving models has received scant

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 42–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Real-Time Event Structures and Scott Domains 43

attention: a few extensions are known of pomsets [4], configurations [12], asyn-
chronous transition systems [3,9], net processes [8], and event structures [7,9].
More recently, the close relationships between probabilistic event structures and
domains has been established in [13].

This paper follows the seminal work of Winskel [14], where prime event struc-
tures are categorically related to Scott domains via a coreflection (a particularly
nice form of an adjunction). We extend Winskel’s approach to real-time event
structures and a specially developed class of Scott domains (marked domains),
obtaining a coreflection between categories of the models.

The rest of the paper is organised as follows. The concepts of marked Scott
domains and real-time event structures are developed in sections 2 and 3, re-
spectively. In Section 4, categorical characterisation of the relationship between
the models are treated.

2 Scott Domains

In this section we provide notions and notations related to Scott domains. First,
recall some notions and notations concerning partial orders from [14].

Let (D,) be a partial order, d ∈ D and X ⊆ D. Then,

– d↑ = {d′ ∈ | d d′} is called the upper cone of d,
– d↓ = {d′ ∈ | d′ d} is called the lower cone of d,
– X is said to be compatible (written Cmp(X)) iff X has an upper bound.

We shall denote the least upper bound (written lub) (greatest lower bound
(written glb)), if it exists, as

⊔
X (

�
X , respectively),

– X is said to be finitely compatible (written Cmpfin(X)), iff every finite subset
Y ⊆fin X has an upper bound,

– X is said to be directed iff all its finite subsets X0 ⊆fin X have upper bounds
in X (so X is finitely compatible and cannot be empty). An element e ∈ D
is said to be finite iff for all directed sets X ⊆ D, if e

⊔
X then e x for

some x ∈ X ,
– D is consistently complete iff every finitely compatible subset X ⊆ D has

a least upper bound
⊔

X (thus, D has the least element ⊥ =
⊔

∅). A
consistently complete partial order is algebraic iff for every element d ∈ D
holds: d =

⊔
{e d | e is finite}.

We call a consistently complete algebraic partial order a Scott domain (or
simply a domain). A finitary Scott domain is one in which every finite element
e dominates only a finite number of elements, i.e. {d′ ∈ D | d′ e} is finite.

Let (D,) be a consistently complete partial order. A (complete) prime of D
is an element p ∈ D s.t. for any compatible set X ⊆ D holds: p

⊔
X ⇒ ∃x ∈

X � p x. Let P be the set of prime elements. D is a prime algebraic domain iff
for every d ∈ D holds: d =

⊔
{p d | p ∈ P}. Thus, a prime algebraic domain is

a Scott domain with a special kind of sub-basis.
Let (D,) be a prime algebraic Scott domain and d, d′ ∈ D. Say d is covered

by d′ iff d ≺ d′, where ≺= \ 2. A prime interval is a pair [d, d′] such that

44 R.S. Dubtsov

d ≺ d′. In the following, we shall use I(D) to indicate the set of prime intervals of
D. Given two prime intervals [c, c′], [d, d′] ∈ I(D) define [c, c′] � [d, d′] ⇐⇒ c =
c′ � d ∧ d′ = c′ � d. Define the equivalence relation ∼ as a symmetric, transitive
closure of the relation �. A covering chain for an element d ∈ D, denoted σ(d),
is a (possibly infinite) sequence: ⊥ = d0 ≺ d1 ≺ . . . ≺ dn ≺ . . . s.t.

⊔
{dj} = d.

Let (D0, 0) and (D1, 1) be partial orders and f be a mapping f : D0 →
D1. Say f is additive iff ∀X ⊆ D0 � Cmp(X) ⇒ f(

⊔
X) =

⊔
fX, stable iff

∀X ⊆ D0 � X
= ∅ ∧ Cmp(X) ⇒ f(
�

X) =
�

fX , ≺-preserving iff ∀x, x′ ∈
D0 � x ≺ x′ ⇒ f(x) ≺ f(x′).

Prime algebraic finitary Scott domains with additive, stable and≺-preserving
mappings constitute the category Dom.

In the following, for a category C we shall use |C| to indicate the class of
objects of C and for arbitrary objects A, B ∈ |C| we shall use C(A, B) to indicate
the set of morphisms from A to B.

Next, the notion of marked domains is developed.

Definition 1. Let D ∈ |Dom| be a prime-algebraic finitary Scott domain. A
mapping m : I(D) → {0, 1} is called a marking. A pair (D, m) is called a
marked domain.

A marked domain (D, m) is called correctly marked iff m respects the ∼
relation, i.e [c, c′] ∼ [d, d′] ⇒ m([c, c′]) = m([d, d′]). In the following, we shall
consider only correctly marked domains and call them simply marked domains.

Further, we need to define auxiliary notions and notations. Let MD =
(D, m) be a marked domain. For an element d ∈ D, define its norm ‖d‖ =∑

dj∈σ(d)\{d} m([dj−1, dj]) ∈ Ñ, where Ñ = N∪{ω} (N is the set of natural num-
bers and ω > n for any n ∈ N). Note that since m respects the ∼ relation, ‖d‖
does not depend on the choice of a covering chain for d and thus is well defined.
Calculate the norm of MD as follows: ‖MD‖ = max{‖d‖ | d ∈ D}.

Define the following relations: d ≺i d′ ⇐⇒ d ≺ d′∧m([d, d′]) = i for i = 0, 1.
Form the relation i as a reflexive, transitive closure of ≺i (i = 0, 1). For an
element d ∈ D, define d↑i = {d′ ∈ D | d i d′} (the i-marked upper cone of d).

Say that a marked domain MD = (D, m) is

– linear iff for any d ∈ D holds d↑1 ∼= {n ∈ Ñ | ‖d‖ � n � ‖MD‖} and for any
d, d′ ∈ D holds d↑1 ∩ d′↑1
= ∅ ⇐⇒ (d i d′ ∧ d′ i d),

– proper iff the set P of prime elements is partitioned into two sets sets P 0

and P 1 such that: P 0 = {p ∈ P | m([dp, p]) = 0}, where dp =
⊔

(p↓, \{p}),
and P 1 = ⊥↑1 \ {⊥}.

Let (D0, m0) and (D1, m1) be marked domains and f ∈ Dom(D0, D1) be a
morphism. Then f is called marking-preserving iff m0([d, d′]) = m1([f(d), f(d′)])
for any [d, d′] ∈ I(D0)

Linear and proper marked domains with marking-preserving morphisms form
the category MDom.

Real-Time Event Structures and Scott Domains 45

3 Real-Time Event Structures

In this section, we introduce a real-time extension of Winskel’s model of prime
event structures [14] by equipping events with time delays.

We first recall the terminology concerning event structures. An event struc-
ture is a partially ordered set of event occurrences together with a symmetric
conflict relation. The ordering relation models causality, whereas the conflict re-
lation expresses alternative choices between events. Two event occurrences that
are neither comparable nor in conflict, may occur concurrently. In this sense,
event structures provide explicit and separate representations of causality, choice
and concurrency.

An event structure is a tuple S = (E, �,#), where E is a set of events; � ⊆
E×E is a partial order (the causality relation), satisfying the principle of finite
causes: ∀e ∈ E � e↓ is finite; # ⊆ E × E is a symmetric and irreflexive relation
(the conflict relation), satisfying the principle of conflict heredity: ∀e, e′, e′′ ∈
E � e # e′ � e′′ ⇒ e #e′′. Let C ⊆ E. Then, C is left-closed iff ∀e, e′ ∈
E � e ∈ C ∧ e′ � e⇒ e′ ∈ C; C is conflict-free iff ∀e, e′ ∈ C � ¬(e # e′); C is a
configuration of S iff C is left-closed and conflict-free. Let Conf(S) denote the set
of all configurations of S. For C ∈ Conf(S) define En(C) = {e ∈ E\C | C∪{e} ∈
Conf(S)} (the set of events enabled at C). For a set E′ ⊆ E define a restriction
of S to E′ as follows: S�E′ = (E′, � ∩(E′ × E′), # ∩ (E′ × E′)).

For event structures S0 = (E0, �0, #0) and S1 = (E1, �1, #1), a total map-
ping θ : E0 → E1 is called a morphism from S0 to S1 if ∀C ∈ Conf(S0) � f(C) ∈
Conf(S1) ∧ ∀e, e′ ∈ C � θ(e) = θ(e′) ⇒ e = e′. Prime event structures with
morphisms constitute the category PES.

We are now ready to introduce the concept of real-time event structures. In
our model, we add time constraints to event structures by associating their events
with time delays w.r.t. a global clock. Furthermore, all events are non-urgent, i.e.
they are allowed but not forced to occur once they are ready (their causal prede-
cessors have occurred and their time delays are respected). Moreover, the occur-
rence of an enabled event itself takes no time. A real-time event structure always
proceeds in two ways — by occurring an event or by letting a certain amount of
time pass. (See, for instance, [3,7,12] for more explanation of the concepts).

Definition 2. A real-time event structure is a tuple (S = (E, �, #), D), where
S is a prime event structure and D : E → N is a timing function s.t. e � e′ ⇒
D(e) � D(e′).

In a graphic representation of a real-time event structure, delays are drawn
near events. The <-relations are depicted by arcs (omitting those derivable by
transitivity), and conflicts are also drawn (omitting those derivable by conflict
heredity).

e0
� e1

e2

#

0 1

1

TS :

46 R.S. Dubtsov

Example 1. Following the conventions, a trivial example of a real-time event
structure is shown in Fig. 1.

A state of an execution of a real-time event structure TS = (S = (E, �,
#), D) is called a timed configuration (C, t), which consists of a configuration
C ∈ Conf(S) and t ∈ Ñ, representing current value of a global clock. The initial
timed configuration of TS is (∅, 0).

A real-time event structure progresses through a sequence of states in two
ways: by occurring an event whose time delay is respected or by incrementing a
global clock. Let TC0 = (C0, t0) and TC1 = (C1, t1) be timed configurations. An
event e ∈ En(C0) may occur at a timed configuration TC0 iff C0∪{e} ∈ Conf(S)
and D(e) � t0. In this case, an occurrence of an event e leads to the timed con-
figuration TC1 (denoted TC0 −→0 TC1) iff C1 \ C0 = {e} and t0 = t1. The
value of a global clock can be incremented at a timed configuration TC0 iff
t < sup{D(e) | e ∈ E}. In this case the increment of a global clock leads to the
timed configuration TC1 (denoted TC0 −→1 TC1) iff C0 = C1 and t1 = t0 + 1.
The timed configuration TC0 is reachable if either TC0 = (∅, 0) or there exists a
reachable timed configuration TC1 such that TC1 −→0 TC0 or TC1 −→1 TC0.
We use TConf(TS) to denote the set of all reachable timed configurations of TS.

(∅, 0)

(∅, 1)
�

({e0}, 0)

({e0}, 1)

�

�

� � ({e0, e1}, 1)

({e2}, 1) � ({e1, e2}, 1)

�
��

�
��

11

0

0

0
0

0

0

Fig. 2

Example 2. To illustrate the concept of timed configurations, the set of timed
configurations of the real-time event structure TS shown in Fig. 1 is depicted
in Fig. 2. Here, arcs marked with 0 and 1 denote the relations −→0 and −→1,
respectively.

For real-time event structures TS0 = (S0 = (E0, �0, #0), D0) and TS1 =
(S1 = (E1, �1, #1), D1), a total mapping θ : E0 → E1 is called a morphism from
TS0 to TS1 iff θ is a morphism from S0 to S1 and θ respects event delays, i.e.
for every e ∈ E0 holds: D0(e) � D1 ◦ θ(e).

Real-time event structures with morphisms form the category TPES.

4 Relating the Models

In this section we relate real-time event structures and marked Scott do-
mains in a categorical setting. For this purpose, the definitions of two functors
T Pr : MDom → TPES and T L : TPES → MDom are developed. Note, we

Real-Time Event Structures and Scott Domains 47

follow the paper [14], where the category PES of prime event structures and the
category Dom of Scott domains are related by the functors Pr : Dom→ PES
and L : PES→ Dom.

First, define the functor T L : TPES→MDom.

Definition 3. For a real-time event structure TS ∈ |TPES|, define T L(TS) =
(TConf(TS), mTS), where the marking mTS is uniquely defined by the relations
−→0 and −→1. For a morphism θ ∈ TPES(TS0, TS1), define T L(θ) as a map-
ping (C, t) $→ (θ(C), t) from TConf(TS0) to TConf(TS1).

The following proposition establishes a property of the mapping T L.

Proposition 1. For a real-time event structure TS, T L(TS) is a linear and
proper marked domain. Moreover, T L : TPES→ TSDom is a functor.

Next, define the functor T Pr : MDom→ TPES, extending the functor Pr
from [14] in the following manner.

Definition 4. For a marked domain (D, m) ∈ |MDom|, define T Pr(D, m) =
(S�P 0, ‖·‖) with S = Pr(D). For a morphism f ∈ MDom(MD0, MD1), define
T Pr(f) = Pr(f)�P 0

0 .

Proposition 2. T Pr : TSDom→ TPES is a functor.

Proof. The only non-trivial part of the proof is to show that T Pr(f) respects
time delays for any morphism f ∈ TSDom(TSD0, TDS1). It is straightforward
due to the definition of Pr(f) from [14] and the fact that f preserves markings
and covering chains (hence, preserves the norms).

Theorem 1. T Pr and T L constitute a coreflection from TSDom to TPES.

Proof (sketch). Suppose MD = (D, m) ∈ |MDom| to be a marked domain.
Consider a mapping ηMD : D → TConf(T Pr(MD)) defined as follows: ηMD :
d $→ (d↓∩P 0, ‖d‖) for every d ∈ D. It is easy to show that ηMD is an isomorphism
in MDom.

Similarly, for any real-time event structure TS ∈ |TSPES| there exists an
isomorphism μTS : TS → T Pr ◦ T L(TS) defined as μTS : e $→ (e↓, D(e)).
Moreover, it is easy to show that T L(μTS) = ηT L(TS).

Due to [10, Theorem 2, pg. 81], it is sufficient to show that for any MD ∈
|MDom| the isomorphism ηMD is universal, i.e. for any real-time event struc-
ture TS and any morphism f ∈ MDom(MD, T L(TS)) there exists a unique
morphism θ ∈ TSPES(T Pr(MD), TS) such that f = T L(θ) ◦ ηMD. In [14] one
can find the definition of the isomorphism ϕD : D → L ◦ Pr(D) for any domain
D ∈ Dom, which is universal in the above-mentioned sense.

Using the fact that D is a prime algebraic finitary domain for every marked
domain MD = (D, m) ∈ |MDom|, there is an isomorphism κMD ∈ Dom(
TConf(T Pr(MD)), L ◦ Pr(D)) defined as κMD = ϕD ◦ η−1

MD.
Since ϕD is universal, there exists a unique morphism θ′ ∈ PES(Pr(D),

Pr(TConf(TS))) s.t. ϕTConf(TS) ◦ f = L(θ′) ◦ ϕD. Define θ = μ−1
TS ◦ (θ′�P 0).

Note that θ is unique because θ′ is unique and μ−1
TS is an isomorphism.

48 R.S. Dubtsov

It is easy to show that θ ∈ TPES(T Pr(MD), TS) and T L(θ) = ϕ−1
TConf(TS)◦

L(θ′) ◦ κMD. Thus, we have f = T L(θ) ◦ ηMD.

5 Conclusions

In this paper, following Winskel’s approach [14] we tried to relate a real-time
prime event structures and Scott domains obtaining coreflections between cate-
gories of the models.

In a future work, we plan to extend the results to real-time generalisations of
different classes of event structures. Some investigation on establishing the re-
lationships between semantical representations (e.g., net processes, event struc-
tures, etc.) of the behaviour of timed Petri nets are now under way, and we plan
to report on this work elsewhere.

References

1. Alur, R., Dill, D.: The theory of timed automata. Theoretical Computer Science,
126 (1994) 183–235.

2. Abramsky, S., Jung, A.: Domain theory. Handbook of Logic in Computer Science,
vol. 3. Clarendon Press, 1994.

3. Aceto, L., Murphi, D.: Timing and causality in process algebra. Acta Informatica
33(4) (1996) 317–350.

4. Casley, R.T., Crew, R.F., Meseguer J., Pratt V.R.: Temporal structures. Mathe-
matical Structures in Computer Science 1(2) (1991) 179–213.

5. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: An event structure semantics
for general Petri nets. Theoretical Computer Science 153 (1996) 129-170.

6. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. Lecture Notes
in Computer Science, 600 (1991) 226–251.

7. Katoen, J.-P.: Quantative and qualitative extensions of event structures. PhD the-
sis, University of Twente, 1996.

8. Lilius, J.: Efficient state space search for time Petri nets. Proc. MFCS’98 Workshop
on Concurrency, August 1998, Brno (Czech Republic), FIMU Report Series, FIMU
RS-98-06 (1998) 123–130.

9. Murphy, D.: Time and duration in noninterleaving concurrency. Fundamenta In-
formaticae 19 (1993) 403–416.

10. MacLane, S.: Categories for the working mathematician. GTM, Springer-Verlag,
1971.

11. Mesguer, J., Montanari U., Sasonne V.: Process versus unfolding semantics for
Place/Transition Petri nets. Theoretical computer science 153 (1996) 171-210.

12. Maggiolo-Schettini, A., Winkowski, J.: Towards an algebra for timed behaviours.
Theoretical Computer Science 103 (1992) 335–363.

13. Varacca, D., Völzer, H., Winskel, G.: Probabilistic event structures and domains.
Lecture Notes in Computer Science, 3170 (2004) 481–496.

14. Winskel, G.: Event Structures. Lecture Notes in Computer Science, 255 (1987)
325–392.

15. Winskel, G., Nielsen, N.: Models for concurrency. Handbook of Logic in Computer
Science, 4, 1995.

Early-Stopping k-Set Agreement in Synchronous
Systems Prone to Any Number of Process Crashes

Philippe Raipin Parvedy, Michel Raynal, and Corentin Travers

IRISA (INRIA-Université de Rennes 1-CNRS),
Campus de Beaulieu, 35042 Rennes, France

M. Raynal: Tel: 33 2 99 84 71 88, Fax: 33 2 99 84 71 71
{praipinp, raynal, travers}@irisa.fr

Abstract. The k-set agreement problem is a generalization of the consensus
problem: each process proposes a value, and each non-faulty process has to de-
cide a value such that a decided value is a proposed value, and no more than k
different values are decided.

This paper presents a surprisingly simple protocol that solves the k-set agree-
ment problem in synchronous systems prone to up to t < n processes can crash
(where n is the total number of processes). The proposed protocol is the first
early stopping k-set agreement protocol that does not impose a constraint on t. It
allows the processes to decide and stop by min(�f/k� + 2, �t/k� + 1) rounds
where f is the number of actual crashes (0 ≤ f ≤ t). In addition to its concep-
tual simplicity, the protocol has an additional noteworthy feature, namely, it is
particularly efficient in common case scenarios. This comes from the fact that it
is based on a mechanism that allows the processes to take into account the actual
pattern of failures and not only their number, thereby allowing the processes to
decide in much less than �f/k� + 2 rounds in a lot of cases.

Keywords: Crash failure, Efficiency, k-set agreement, Message passing system,
Round-based computation, Synchronous system, Uniform consensus.

1 Introduction

Context of the paper The k-set agreement problem generalizes the uniform consensus
problem (that corresponds to the case k = 1). It has been introduced by S. Chaudhuri
to investigate how the number of choices (k) allowed to the processes is related to the
maximum number (t) of processes that can crash [5]. The problem can be defined as
follows. Each of the n processes (processors) defining the system starts with a value
(called a “proposed” value). Each process that does not crash has to decide a value
(termination), in such a way that a decided value is a proposed value (validity) and no
more than k different values are decided (agreement).

When we consider asynchronous systems, the problem can trivially be solved when
k > t. Differently, it has been shown that there is no solution in these systems as soon as
k ≤ t [3,13,19]. (The asynchronous consensus impossibility, case k = 1, was demon-
strated before, using different techniques [9]1). Several approaches have been proposed

1 The impossibility to solve consensus in asynchronous systems is usually named “FLP result”
according to the names of its authors [9].

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 49–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 P. Raipin Parvedy, M. Raynal, and C. Travers

to circumvent the impossibility to solve the k-set agreement problem in asynchronous
systems (e.g., probabilistic protocols [17], or unreliable failure detectors with limited
scope accuracy [12,16]).

The situation is different in synchronous systems where the k-set agreement prob-
lem can always be solved, whatever the value of t (and k). It has also been shown that,
in the worst case, the lower bound on the number of rounds (time complexity measured
in communication steps) is %t/k&+1 [6]. (This bound generalizes the t+1 lower bound
associated with the consensus problem [1,2,8,15].)

Although failures do occur, they are rare in practice. For the uniform consensus
problem (k = 1), this observation has motivated the design of early deciding syn-
chronous protocols [4,7,14,18], i.e., protocols that can cope with up to t process crashes,
but decide in less than t+1 rounds in favorable circumstances (when there are few fail-
ures). More precisely, these protocols allow the processes to decide in min(f +2, t+1)
rounds, where f is the number of processes that crash during a run, 0 ≤ f ≤ t, which
has been shown to be optimal (the worst scenario being when there is exactly one crash
per round).

In a very interesting way, it has very recently been shown that the early deciding
lower bound for the k-set agreement problem is min(%f/k&+ 2, %t/k&+ 1) [10]. This
lower bound, not only generalizes the corresponding uniform consensus lower bound,
but also shows an “inescapable tradeoff” among the number t of faults tolerated, the
number f of actual faults, the degree k of coordination we want to achieve, and the
best running time achievable. It is also important to notice that, when compared to
consensus, k-set agreement divides the running time by k (e.g., allowing two values to
be decided halves the running time).

Related work. While there exist several not-early deciding k-set agreement protocols
[2,6,15] (i.e., protocols that always terminate in %t/k& + 1 rounds), to our knowledge
only one early deciding k-set agreement protocol has been proposed [11]. This protocol
assumes t < n−k, which means that, contrarily to what we could “normally” hope, the
maximum number t of processes that can crash decreases when the coordination degree
k increases.

Content of the paper. We propose here a protocol that does not impose a constraint on
t (it assumes only t < n, i.e., at least one process has to be correct for the problem
to be meaningful). Moreover, differently from uniform consensus protocols where a
correct process that decides in a round is required to halt only in the next round, the
proposed protocol allows a process to decide and halt in the very same round. This
means that, instead of the “early deciding” property, the protocol provides the stronger
“early stopping” property in min(%f/k&+ 2, %t/k&+ 1).

The proposed protocol enjoys two noteworthy features. The first lies in its design
simplicity (that is a first class property). Interestingly, when we take k = 1, we obtain
a uniform consensus protocol simpler than some already proposed uniform consensus
protocols (with a more general proof, based on a totally different approach). The second
feature lies in its two dimensional efficiency. The first dimension concerns the size of
the messages: they contain only one bit plus one proposed value. The second dimension
is a “very quick decision” property, namely, except in extreme cases where the crashes

Early-Stopping k-Set Agreement in Synchronous Systems Prone 51

are evenly distributed in the rounds, the processes decide and stop in much less than
%f/k& + 2 rounds. The achievement of this first class efficiency property is provided
by the introduction of a very simple mechanism that allows a process to count the
number of processes that, from its point of view, have crashed during the last round,
whatever the number of previous crashes. This differential approach allows a process
to take into account the failure pattern and not only the number of failures that occur.
If, during the very first rounds, there are either few crashes or a lot of crashes, the
protocol terminates very quickly. As an example, the protocol stops after only three
rounds when xk (∀ x > 1) processes have crashed before the protocol starts, and less
than k processes crash thereafter. The %f/k& + 2 lower bound is attained only in the
worst scenarios where there are k crashes per round. The proposed protocol is the first
k-set agreement protocol enjoying this “very quick decision” property.

Roadmap. The paper consists 4 of parts. Section 2 presents the computation model
and gives a definition of the k-set agreement problem. Section 3 presents the protocol
and proves it is correct. Finally Section 4 discusses the local predicate used by bthe
processes to early decide and stop.

2 Computation Model and k-Set Agreement

2.1 Round-Based Synchronous System

The system model consists of a finite set of processes, namely, Π = {p1, . . . , pn}, that
communicate and synchronize by sending and receiving messages through channels.
Every pair of processes pi and pj is connected by a channel denoted (pi, pj).

The system is synchronous. This means that each of its executions consists of a
sequence of rounds. Those are identified by the successive integers 1, 2, etc. For the
processes, the current round number appears as a global variable r that they can read,
and whose progress is managed by the underlying system. A round is made up of three
consecutive phases:

– A send phase in which each process sends messages.
– A receive phase in which each process receives messages.

The fundamental property of the synchronous model lies in the fact that a message
sent by a process pi to a process pj at round r, is received by pj at the same round r.

– A computation phase during which each process processes the messages it re-
ceived during that round and executes local computation.

The underlying communication system is assumed to be failure-free: there is no cre-
ation, alteration, loss or duplication of message.

2.2 Process Failure Model

A process is faulty during an execution if its behavior deviates from that prescribed by
its protocol, otherwise it is correct. As already indicated, t is an upper bound on the
number of faulty processes. A failure model defines how a faulty process can deviate
from its protocol.

52 P. Raipin Parvedy, M. Raynal, and C. Travers

We consider here the crash failure model. A faulty process stops its execution pre-
maturely. After it has crashed, a process does nothing. Let us observe that if a process
crashes in the middle of a sending phase, only a subset of the messages it was supposed
to send might actually be sent. As already indicated, t denotes the upper bound on the
number of processes that can crash, while f denotes the number of actual crashes during
a particular run. We have 0 ≤ f ≤ t < n.

2.3 The k-Set Agreement Problem

The problem has been informally stated in the Introduction: every process pi proposes
a value vi and each correct process has to decide on a value in relation to the set of pro-
posed values. More precisely, the k-set agreement problem is defined by the following
three properties:

– Termination: Every correct process eventually decides.
– Validity: If a process decides v, then v was proposed by some process.
– Agreement: No more than k different values are decided.

As we can see 1-set agreement is the uniform consensus problem. In the following,
we implicitly assume k ≤ t. This is because k-set agreement can trivially be solved
in synchronous or asynchronous systems when t < k [5]. A one communication step
protocol is as follows: (1) k processes are arbitrarily selected prior the execution; (2)
each of these k processes sends its value to all processes; (3) a process decides the first
value it receives.

3 A k-Set Agreement Protocol

This section describes a k-set agreement protocol that allows the correct processes to
decided by round min(%f/k& + 2, %t/k& + 1), for t < n. The protocol relies on a
simple mechanism that allows a process to learn that it knows one of k smallest values
currently present in the system.

3.1 Protocol Description

A process pi invokes the k-set protocol by calling the function k-set agreement (vi)
where vi is the value it proposes (Figure 1). If it does not crash, pi terminates when it
executes return (esti) at line 4 (early stopping) or line 11, where esti is the value it
decides.

The value decided by a process pi is the smallest proposed value it has ever seen.
That value is kept in the local variable esti. The well-known “flooding strategy” (a basic
technique encountered in nearly all agreement protocols [2,15,18]) is used to allow the
processes to improve their knowledge on the smallest proposed values, namely, during
each round, every active process sends the current value of esti to all the processes.
The achievement of the early stopping property is based on the following idea. Let
UP [r − 1] be the set of processes not crashed by the end of round r − 1, and Ri[r] be
the set of processes from which pi has received messages during round r. Although pi

Early-Stopping k-Set Agreement in Synchronous Systems Prone 53

Function k-set agreement (vi)

(1) esti ← vi; nbi[0] ← n; can deci ← false;
(2) when r = 1, 2, . . . , �t/k� + 1 do % r: round number %
(3) begin round
(4) send (esti, can decidei) to all; % including pi itself %
(5) if can decidei then return (esti) end if;
(6) let nbi[r] = number of messages received by pi during r;
(7) let decidei = ∨ on the set of can decidej boolean values received during r;
(8) esti ← min({estj values received during the current round r});
(9) if

(
(nbi[r − 1] − nbi[r] < k) ∨ decidei

)
then can decidei ← true end if

(10) end round;
(11) return (esti)

Fig. 1. Early stopping synchronous k-set agreement: code for pi (t < n)

has no means to known the exact value of UP [r − 1] in the general case, as process
crashes are stable we always have Ri[r] ⊆ UP [r − 1] ⊆ Ri[r − 1]. More, in the
particular case where Ri[r − 1] = Ri[r], pi has received a message from each process
pj ∈ UP [r − 1], i.e., from all the processes that were active at the beginning of r. It can
then correctly conclude that it knows the smallest value among the values still present
in the system at the beginning of r. Let us observe that, as the failure model is the crash
model and a process pi sends at most one message per round to each other process,
we can use, instead of Ri[r], a local variable nbi[r] counting the number of processes
from which pi has received a message during r. The predicate Ri[r − 1] = Ri[r] then
becomes nbi[r − 1]− nbi[r] = 0.

As we are interested in solving k-set agreement, it is not necessary for pi to know
the smallest value present in the system, it is sufficient for it to known one amongst the
k smallest values present in the system. This knowledge can be obtained by weakening
the locally evaluable predicate nbi[r − 1] − nbi[r] = 0 into nbi[r − 1] − nbi[r] < k.
This weakening is due to the following observation. When nbi[r − 1]− nbi[r] < k, pi

knows that it misses values from at most k − 1 processes in the system. In the worst
case these k − 1 missing values are smaller than the value of esti at the end of r, from
which we conclude that, at the end of r, the value of its current estimate esti is one of
the k smallest values present in the system.

Unfortunately, the local predicate nbi[r−1]−nbi[r] < k is not powerful enough to
allow pi to conclude that the other processes know it has one of the k smallest values.
Consequently, pi cannot decide and stop immediately. To be more explicit, let us con-
sider the case where pi has (not any of the k smallest values but) the smallest value v in
the system, is the only process that knows v, decides it at the end of r and then crashes
by the end of r. The other processes can then decide k other values as v is no longer is
the system from round r+1. An easy way to fix this problem consists in requiring pi to
proceed to r + 1 before deciding (this is similar to the way used to guarantee uniform
agreement in consensus protocols). When nbi[r − 1] − nbi[r| < k becomes true, pi

sets a boolean (can decidei) to true and proceeds to the next round r + 1. As, before

54 P. Raipin Parvedy, M. Raynal, and C. Travers

deciding at line 4 of r +1, pi has first sent the pair (esti, can decidei) to all processes,
any process pj active during r + 1 not only knows v but, as can decidei is true, knows
also that v is one of k smallest values present in the system during r + 1.

3.2 Proof of the Protocol

Lemma 1. [Validity] A decided value is a proposed value.

Proof. The proof of the validity consists in showing that an esti local variable always
contains a proposed variable. This is initially true (round r = 0). Then, a simple induc-
tion reasoning proves the property: assuming the property is true at a round r ≥ 1, it
follows from the protocol code (lines 4 and 8), and the fact that a process receives at
least the value it has sent, that the property remains true at round r + 1. �Lemma 1

Lemma 2. [Termination] Every correct process decides.

Proof. The proof is an immediate consequence of the fact that a process executes at
most %t/k& + 1 rounds and the computation model is the synchronous round-based
computation model. �Lemma 2

Lemma 3. [Agreement] No more than k different values are decided.

Proof. Let EST [0] be the set of proposed values, and EST [r] the set of esti values of
the processes that decide during r or proceed to r + 1 (r ≥ 1). We first state and prove
three claims.

Claim C1. ∀r ≥ 0: EST [r + 1] ⊆ EST [r].
Proof of the claim. The claim follows directly from the fact that, during a round, the
new value of an esti variable computed by a process is the smallest of the estj values
it has received. So values can only disappear, due to the minimum function used at line
8 or to process crashes. End of the proof of the claim C1.

Claim C2. Let pi be a process such that can decidei is set to true at the end of r. Then
esti is one of the k smallest values in EST [r].
Proof of the claim. Let v be the value of esti at the end of r (v ∈ EST [r]). If
can decidei is set to true at the end of r, nbi[r − 1] − nbi[r] < k is satisfied or pi

has received a message carrying a pair (v1, true), and v1 has been taken into account
when computing the new value of esti at line 8 during round r, i.e., v ≤ v1. So, there is
a chain of processes j = ja, ja−1, . . . , j0 = i that has carried the boolean value true to
pi. This chain is such that a ≥ 0, nbj[r − a− 1]− nbj[r − a] < k is satisfied, and any
value v′ sent by a process participating in this chain is such that v ≤ v′ (as each process
in the chain computes the minimum of the values it has received). In particular, we have
v ≤ v′′ where v′′ is the value sent by the first process in the chain. (The case a = 0
corresponds to the “one process” chain case where the local predicate is satisfied at pi.)
Due to claim C1, EST [r] ⊆ EST [r − a]. Consequently, if v′′ is one of the k smallest
values of EST [r − a], v ≤ v′′ implies v is one of the k smallest values of EST [r].

Early-Stopping k-Set Agreement in Synchronous Systems Prone 55

So, taking r − a = r′, we have to show that nbj [r′ − 1]− nbj[r′] < k implies that
the value v′′ of estj at the end of r′, is one of the k smallest values of EST [r′]. As the
crashes are stable, nbj [r′ − 1]− nbj[r′] < k, allows concluding that pj has received a
message from all but at most k − 1 processes that where not crashed at the beginning
of r′. As pj computes the minimum of all the values it has received, and misses at most
k − 1 values of EST [r′], this means that the value v′′ computed by pj at the end of r′

is one of the k smallest values present in EST [r′]. End of the proof of the claim C2.

Claim C3. Let pi be process that decides (at line 5 or 11) during the round r. Its boolean
flag can decidei is then equal to true.
Proof of the claim. The claim is trivially true if pi decides at line 5. If pi decides at line
11, it decides during the last round, namely r = %t/k&+ 1. Let us consider two cases.

– At round r, pi receives from a process pj a message such as can decidej = true.
In that case, pi sets can decidei to true at line 9, and the claim follows.

– In the other case, no process pj has decided at a round r′ < r (otherwise, pi would
have received from pj a message such that can decidej = true). Let t = k x + y
with y < k (hence, x = %t/k& = r − 1). As nbi[r′ − 1] − nbi[r′] < k was not
satisfied at each round r′ such that 1 ≤ r′ ≤ x = r − 1, we have nbi[x] ≤ n− kx.
Moreover, as pi has not received from any pj a message such that can decidej is
equal to true, if, during r, pi does not receive a message from pj it is because pj has
crashed. So, as at most t processes crash, we have nbi[x+1] ≥ n−t = n−(k x+y).
It follows that nbi[x]− nbi[x + 1] ≤ y < k. the claim follows.

End of the proof of the claim C3.

To prove the lemma, we now consider two cases according to the line during which a
process decides.

– No process decides at line 5. This means that a process pi that decides, decides
at line 11 during the last round. Due to the claim C3, such a pi has then its flag
can decidei equal to true. Due to the claim C2, it decides one of the k smallest
values in EST [%t/k&+ 1].

– A process decides at line 5. Let r be the first round during which a process pi

decides at that line and v be the value it decides. Since pi decides at r:
• pi has set its boolean flag can decidei to true at the end of r − 1, and its

estimate esti = v is consequently one of the k smallest values in EST [r − 1]
(Claim C2). It follows that two processes that decide during r decide values
that are among the the k smallest values in EST [r − 1].

• pi has sent to all the processes (line 4) the pair (v, true) before deciding at line
5 during r. This implies that a (non-crashed) process pj that does not decide
at r receives v at r and uses it to compute its new value of estj . Due to the
minimum function used at line 8, it follows that, from now on, we will always
have estj ≤ v.
Let us assume that pj does not crash. If it decides, it decides at r′ > r, and then
it necessarily decides a value v′ ≤ v. As EST [r′] ⊆ EST [r − 1] (claim C1),
we have v′ ∈ EST [r − 1]. Combining v′ ≤ v, v′ ∈ EST [r − 1], and the fact

56 P. Raipin Parvedy, M. Raynal, and C. Travers

that v is one of the k smallest values in EST [r− 1], it follows that the value v′

decided by pj is one of the k smallest values in EST [r − 1].

�Lemma 3

Theorem 1. [k-Set Agreement] The protocol solves the k-set agreement problem.

Proof. The proof follows from the Lemmas 1, 2, and 3. �Theorem 1

Theorem 2. [Early Stopping] No process halts after the round min(%f/k&+2, %t/k&+
1).

Proof. Let us first observe that a process decides and halts at the same round; this
occurs when it executes return (esti) at line 4 or 11. As observed in Lemma 2, the
fact that no process decides after %t/k& + 1 rounds is an immediate consequence of
the code of the protocol and the round-based synchronous model. So, considering that
0 ≤ f ≤ t processes crash, we show that no process decides after the round %f/k&+ 2.
Let f = xk + y (with y < k). This means that x = %f/k&.

The worst case scenario is when, for any process pi that evaluates the local decision
predicate nbi[r − 1] − nbi[r] < k, this predicate is false as many times as possible.
Due to the pigeonhole principle, this occurs when exactly k processes crash during
each round. This means that we have nbi[1] = n − k, · · · , nbi[x] = n − kx and
nbi[x+1] = n− f = n− (kx+ y), from which we conclude that r = x+1 is the first
round such that nbi[r−1]−nbi[r] = y < k. It follows that the processes pi that execute
the round x+1 set their can decidei boolean to true. Consequently, the processes that
proceed to x+2 decide at line 5 during that round. As x = %f/k&, they decide at round
%f/k&+ 2. �Theorem 2

4 Discussion

Instead of using the local predicate nbi[r − 1]− nbi[r] < k, an early stopping protocol
could be based on the local predicate faultyi[r] < k r where faultyi[r] = n− nbi[r]
(the number of processes perceived as faulty by pi)2. While both predicates can be used
to ensure early stopping, we show here that nbi[r − 1]− nbi[r] < k is a more efficient
predicate than faultyi[r] < k r (more efficient in the sense that it can allow for earlier
termination). To prove it, we show the following:

– (i) Let r be the first round during which the local predicate faultyi[r] < k r is
satisfied. The predicate nbi[r − 1]− nbi[r] < k is then also satisfied.

– (ii) Let r be the first round during which the local predicate nbi[r−1]−nbi[r] < k
is satisfied. It is possible that faultyi[r] < k r be not satisfied.

2 This predicate is implicitly used in the proof of the (not-early deciding) k-set agreement pro-
tocol described in [15].

Early-Stopping k-Set Agreement in Synchronous Systems Prone 57

We first prove (i). As r is the first round during which faultyi[r] < k r is satisfied,
we have faultyi[r − 1] ≥ k (r − 1). So, we have faultyi[r] − faultyi[r − 1] <
k r−k (r−1) = k. Replacing the sets faultyi[r] and faultyi[r−1] by their definitions
we obtain (n− nbi[r]) − (n− nbi[r − 1]) < k, i.e., (nbi[r − 1]− nbi[r]) < k.

A simple counter-example is sufficient to prove (ii). Let us consider a run where
f1 > ak (a > 2) processes crash initially (i.e., before the protocol starts), and f2 < k
processes crash thereafter. We have n− f1 ≥ nbi[1] ≥ nbi[2] ≥ n− (f1+ f2), which
implies that (nbi[r − 1] − nbi[r]) < k is satisfied at round r = 2. On an other side,
faultyi[2] ≥ f1 = ak > 2k, from which we conclude that faultyi[r] < r k is not
satisfied at r = 2.

This discussion shows that, while the early decision lower bound can be obtained
with any of these predicates, the predicate nbi[r − 1] − nbi[r] < k is more efficient
in the sense it takes into consideration the actual failure pattern (a process counts the
number of failures it perceives during a round, and not only from the beginning of the
run). Differently, the predicate faultyi[r] < r k considers only the actual number of
failures and not their pattern (it basically always considers the worst case where there
are k crashes per round, whatever their actual occurrence pattern).

References

1. Aguilera M.K. and Toueg S., A Simple Bivalency Proof that t-Resilient Consensus Requires
t + 1 Rounds. Information Processing Letters, 71:155-178, 1999.

2. Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced
Topics, McGraw-Hill, 451 pages, 1998.

3. Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asyn-
chronous Computations. Proc. 25th ACM Symposium on Theory of Computation, California
(USA), pp. 91-100, 1993.

4. Charron-Bost B. and Schiper A., Uniform Consensus is Harder than Consensus. Journal of
Algorithms, 51(1):15-37, 2004.

5. Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105:132-158, 1993.

6. Chaudhuri S., Herlihy M., Lynch N. and Tuttle M., Tight Bounds for k-Set Agreement. Jour-
nal of the ACM, 47(5):912-943, 2000.

7. Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine Agreement. Journal of
the ACM, 37(4):720-741, April 1990.

8. Fischer M.J., Lynch N.A., A Lower Bound on the Time to Assure Interactive Consistency.
Information Processing Letters, 14(4):183-186, 1982.

9. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

10. Gafni E., Guerraoui R. and Pochon B., From a Static Impossibility to an Adaptive Lower
Bound: The Complexity of Early Deciding Set Agreement. Proc. 37th ACM Symposium on
Theory of Computing (STOC 2005), Baltimore (MD), May 2005.

11. Guerraoui R. and Pochon B., The Complexity of Early Deciding Set Agreement: how Topol-
ogy Can Help? Proc. 4th Workshop in Geometry and Topology in Concurrency and Dis-
tributed Computing (GETCO’04), BRICS Notes Series, NS-04-2, pp. 26-31, Amsterdam
(NL), 2004.

58 P. Raipin Parvedy, M. Raynal, and C. Travers

12. Herlihy M.P. and Penso L. D., Tight Bounds for k-Set Agreement with Limited Scope Ac-
curacy Failure Detectors. Proc. 17th Int. Symposium on Distributed Computing (DISC’03),
Springer Verlag LNCS #2848, pp. 279-291, Sorrento (Italy), 2003.

13. Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability.
Journal of the ACM, 46(6):858-923, 1999.

14. Lamport L. and Fischer M., Byzantine Generals and Transaction Commit Protocols. Unpub-
lished manuscript, 16 pages, April 1982.

15. Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Fransisco (CA), 872
pages, 1996.

16. Mostefaoui A. and Raynal M., k-Set Agreement with Limited Accuracy Failure Detectors.
Proc. 19th ACM Symposium on Principles of Distributed Computing, ACM Press, pp. 143-
152, Portland (OR), 2000.

17. Mostefaoui A. and Raynal M., Randomized Set Agreement. Proc. 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA’01), ACM Press, pp. 291-297, Hersonissos
(Crete), 2001.

18. Raynal M., Consensus in Synchronous Systems: a Concise Guided Tour. Proc. 9th IEEE
Pacific Rim Int. Symposium on Dependable Computing (PRDC’02), Tsukuba (Japan), IEEE
Computer Press, pp. 221-228, 2002.

19. Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topology of
Public Knowledge. SIAM Journal on Computing, 29(5):1449-1483, 2000.

Allowing Atomic Objects to Coexist with

Sequentially Consistent Objects

Michel Raynal� and Matthieu Roy†

�IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
†LAAS CNRS, 7 Avenue du Colonel Roche, 31077, Toulouse cedex, France

raynal@irisa.fr, mroy@laas.fr

Abstract. A concurrent object is an object that can be concurrently
accessed by several processes. Two well known consistency criteria for
such objects are atomic consistency (also called linearizability) and se-
quential consistency. Both criteria require that all the operations on all
the concurrent objects be totally ordered in such a way that each read
operation obtains the last value written into the corresponding object.
They differ in the meaning of the word ”last” that refers to physical
time for atomic consistency, and to logical time for sequential consis-
tency. This paper investigates the merging of these consistency criteria.
It presents a protocol that allows the upper layer multiprocess program
to use simultaneously both types of consistency: purely atomic objects
can coexist with purely sequentially consistent objects. The protocol is
built on top of a message passing asynchronous distributed system. In-
terestingly, this protocol is generic in the sense that it can be tailored to
provide only one of these consistency criteria.

Keywords: Asynchronous System, Atomic Consistency, Combination of
consistency criteria, Linearizability, Message Passing, NP-Completeness,
Shared Memory Abstraction, Sequential Consistency.

1 Introduction

Context of the study The definition of a consistency criterion is crucial for the
correctness of a multiprocess program. Basically, a consistency criterion defines
which value has to be returned when a read operation on a shared object is in-
voked by a process. The strongest (i.e., most constraining) consistency criterion
is atomic consistency (also called linearizability [8]). It states that a read returns
the value written by the last preceding write, ”last” referring to real-time oc-
currence order (concurrent writes being ordered). Causal consistency [3,5] is a
weaker criterion stating that a read does not get an overwritten value. Causal
consistency allows concurrent writes; consequently, it is possible that concurrent
read operations on the same object get different values (this occurs when those
values have been produced by concurrent writes). Other consistency criteria
(weaker than causal consistency) have been proposed [1,19].

Sequential consistency [10] is a criterion that lies between atomic consistency
and causal consistency. Informally it states that a multiprocess program executes

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 59–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 M. Raynal and M. Roy

correctly if its results could have been produced by executing that program on a
single processor system. This means that an execution is correct if we can totally
order its operations in such a way that (1) the order of operations in each process
is preserved, and (2) each read gets the last previously written value, “last”
referring here to the total order. The difference between atomic consistency and
sequential consistency lies in the meaning of the word “last”. This word refers
to real-time when we consider atomic consistency, while it refers to a logical
time notion when we consider sequential consistency (namely the logical time
defined by the total order). The main difference between sequential consistency
and causal consistency lies in the fact that (as atomic consistency) sequential
consistency orders all write operations, while causal consistency does not require
to order concurrent writes.

Related work. It has been shown that determining whether a given execution is
sequentially consistent is an NP-complete problem [21]. This has an important
consequence as it rules out the possibility of designing efficient sequential con-
sistency protocols (i.e., protocols that provide sequentially consistent executions
and just these). This means that, in order to be able to design efficient sequential
consistency protocols, additional constraints have to be imposed on executions.
One of these constraints (that has been proposed in [13]) is the following. Let
two operations conflict if both are on the same object and one of them is a write.
Let us say that an execution satisfies the OO-constraint if any pair of conflicting
operations are ordered. It is shown in [13] that an OO-constrained execution is
sequentially consistent if its read operations are legal (i.e., do not provide over-
written values). This approach shows that a sequential consistency protocol can
be obtained by combining two mechanisms: one providing the OO-constraint
and the other providing read legality.

On another side, It has been shown in [15] that sequential consistency can
be seen as a form of lazy atomic consistency. The main difference between the
two lies in the fact that sequential consistency allows a process to keep a cached
value as long as it does not make inconsistent the other operations, while atomic
consistency requires to update or invalidate the cached values of an object as
soon as this object is modified.

Very recently, the combination of sequential consistency[10] and causal con-
sistency [3] has been investigated in [22].

Content of the paper. This paper investigates a combination of sequential consis-
tency with atomic consistency within the same parallel program. More precisely,
it considers that the objects are divided into two classes, the objects that are
atomically consistent and the objects that are sequentially consistent. A protocol
is presented for this type of object semantics combination. This protocol general-
izes the sequential consistency protocol we have introduced in [15]. (In addition
to its own interest, the proposed protocol provides a better understanding of the
link relating sequential consistency and atomic consistency.)

Allowing Atomic Objects to Coexist with Sequentially Consistent Objects 61

Roadmap. The paper consists of three sections. Section 2 presents the shared
memory abstraction, atomic consistency, and sequential consistency. Section 3
presents the protocol. Finally, Section 4 provides a few concluding remarks.

2 The Consistent Shared Memory Abstraction

A parallel program defines a set of processes interacting through a set of con-
current objects. This set of shared objects defines a shared memory abstraction.
Each object is defined by a sequential specification and provides processes with
operations to manipulate it. When it is running, the parallel program produces
a concurrent system [8]. As in such a system an object can be accessed con-
currently by several processes, it is necessary to define consistency criteria for
concurrent objects.

2.1 Shared Memory Abstraction, History and Legality

Shared Memory Abstraction A shared memory system is composed of a finite
set of sequential processes p1, . . . , pn that interact via a finite set X of shared
objects. Each object x ∈ X can be accessed by read and write operations. A
write into an object defines a new value for the object; a read allows to obtain
a value of the object. A write of value v into object x by process pi is denoted
wi(x)v; similarly a read of x by process pj is denoted rj(x)v where v is the
value returned by the read operation; op will denote either r (read) or w (write).
For simplicity, as in [3,18], we assume all values written into an object x are
distinct1. Moreover, the parameters of an operation are omitted when they are
not important. Each object has an initial value (it is assumed that this value
has been assigned by an initial fictitious write operation).

History concept. Histories are introduced to model the execution of shared mem-
ory parallel programs. The local history (or local computation) ĥi of pi is the
sequence of operations issued by pi. If op1 and op2 are issued by pi and op1 is
issued first, then we say “op1 precedes op2 in pi’s process-order”, which is noted
op1→i op2. Let hi denote the set of operations executed by pi; the local history
ĥi is the total order (hi,→i).

Definition 1. An execution history (or simply history, or computation) Ĥ of
a shared memory system is a partial order Ĥ = (H,→H) such that:

– H =
⋃

i hi

– op1 →H op2 if:
i) ∃ pi : op1 →i op2 (in that case, →H is called process-order relation),

1 Intuitively, this hypothesis can be seen as an implicit tagging of each value by a
pair composed of the identity of the process that issued the write plus a sequence
number.

62 M. Raynal and M. Roy

or ii) op1 = wi(x)v and op2 = rj(x)v (in that case →H is called read-from
relation),

or iii) ∃op3 : op1→H op3 and op3→H op2.

Two operations op1 and op2 are concurrent in Ĥ if we have neither op1→H op2
nor op2→H op1.

Legality notion. The legality concept is the key notion on which are based defi-
nitions of shared memory consistency criteria [3,5,7,12,19]. From an operational
point of view, it states that, in a legal history, no read operation can get an
overwritten value.

Definition 2. A read operation r(x)v is legal if: (i) ∃ w(x)v : w(x)v →H r(x)v
and (ii)
 ∃ op(x)u : (u
= v) ∧ (w(x)v →H op(x)u →H r(x)v). A history Ĥ is
legal if all its read operations are legal.

2.2 Sequential Consistency

Sequential consistency has been proposed by Lamport in 1979 to define a cor-
rectness criterion for multiprocessor shared memory systems [10]. A system is
sequentially consistent with respect to a multiprocess program, if ”the result
of any execution is the same as if (1) the operations of all the processors were
executed in some sequential order, and (2) the operations of each individual pro-
cessor appear in this sequence in the order specified by its program”.

This informal definition states that the execution of a program is sequentially
consistent if it could have been produced by executing this program on a single
processor system2. More formally, we define sequential consistency in the follow-
ing way. Let us first recall the definition of linear extension of a partial order.
A linear extension Ŝ = (S,→S) of a partial order Ĥ = (H,→H) is a total order
that respects the partial order. This means we have the following: (i) S = H ,
(ii) op1 →H op2 ⇒ op1 →S op2 (Ŝ maintains the order of all ordered pairs of Ĥ)
and (iii) →S defines a total order.

Definition 3. A history Ĥ = (H,→H) is sequentially consistent if it has a legal
linear extension.

As an example let us consider the history Ĥ depicted in Figure 1 (only the
edges that are not due to transitivity are indicated, transitivity edges come from
process-order and read-from relations. Moreover, process-order edges are denoted
by continuous arrows and read-from edges by dotted arrows). Each process pi

(i=1,2) has issued three operations on the shared objects x and y. As we can
2 In his definition, Lamport assumes that the process-order relation defined by the

program (point 2) of the definition) is maintained in the equivalent sequential exe-
cution, but not necessarily in the execution itself. As we do not consider programs
but only executions, we implicitly assume that the process-order relation displayed
by the execution histories are the ones specified by the programs which gave rise to
these execution histories.

Allowing Atomic Objects to Coexist with Sequentially Consistent Objects 63

w1(x)0

real time axis

w2(x)1 w2(y)2 r2(x)1

r1(y)2 r1(x)0

Fig. 1. A sequentially consistent execution

see, when looking at the real time axis, the write operations w1(x)0 and w2(x)1
are concurrent. The r1(y)2 and w2(y)2 are also concurrent. It is easy to see that
Ĥ is sequentially consistent by building a legal linear extension Ŝ including first
the operations issued by p2 and then the ones issued by p1, namely we have:

Ŝ = w2(x)1 w2(y)2 r2(x)1 w1(x)0 r1(y)2 r1(x)0.

This means that Ĥ could have been produced by executing the multiprocess
program on a machine with a single processor and a scheduler, which is the very
essence of sequential consistency.

2.3 Atomic Consistency

Atomic consistency is the oldest consistency criterion in the sense that it has
always been implicitly used. It has been extended to objects more sophisticated
than read/write objects under the name linearizability [8].

Atomic consistency considers that operations take time and consequently its
definition is based on the real-time occurrence order of operations. Let ≺rt be
a real-time precedence relation on operations defined as follows: op1 ≺rt op2 if
op1 was terminated before op2 started3. Let us notice that ≺rt is a partial order
relation as two operations whose executions overlap in real-time are not ordered.

Definition 4. A history Ĥ = (H,→H) is atomically consistent if it has a legal
linear extension that includes ≺rt.

This means that, to be atomically consistent, Ĥ must have a legal linear exten-
sion Ŝ = (H,→S) such that ∀op1, op2 : (op1 ≺rt op2) ⇒ (op1 →S op2). The
linear extension Ŝ has to keep real-time order. It is easy to see why invalidation-
based atomic consistency protocols use an eager invalidation strategy: this en-
sures that the real-time occurrence order on operations cannot be ignored, a
read always getting the last value (with respect to real-time).

It is easy to see that the execution described in Figure 1 is not atomically
consistent (the read operations on x issued by by p1 and p2 should return the
same value, that value being determined by the ordering on w1(x)0 and w2(x)1
imposed by the execution). Differently, the execution described in Figure 2 is
3 See [8] for a formal definition of “terminated before” and “started”.

64 M. Raynal and M. Roy

w1(x)0

real time axis

w2(x)1 w2(x)2

r1(x)1 r1(x)2

Fig. 2. An atomically consistent execution

atomically consistent. A base linear extension Ŝ1 respecting real time order is
the following:

Ŝ1 = w1(x)0 w2(x)1 r1(x)1 w2(x)2 r1(x)2.

As we can see in Ŝ1, the concurrent operations r1(x)1 and w2(x)2 have been
ordered by the execution with the read operation first. Another execution could
have ordered them differently, in that case we would have the base linear exten-
sion S2 = w1(x)0 w2(x)1 w2(x)2 r1(x)2 r1(x)2. It is important that to notice
that, in all cases, the second read operation by p1 obtains the value 2, as that
value is the last value written into x (last with respect to real time).

Atomic consistency vs sequential consistency. Atomic consistency and sequential
consistency are often confused, even in some textbooks! The fact that one has to
respect real time order (atomic consistency) while the other has not (sequential
consistency) has a fundamental consequence that has an important impact in
practice. It is stated by the following property.

A property P of a concurrent system is local if the system as a whole satisfies
P whenever each individual object satisfies P . The following theorem is a main
result of [8]. It states that atomic consistency is a local property. let Ĥ |x (Ĥ
at x) be the projection of Ĥ on x (i.e., Ĥ |x includes only the operations that
involve x).

Theorem 1. [8] Ĥ is atomically consistent iff, for each object x, Ĥ|x is atom-
ically consistent.

This theorem is important as it states that a concurrent system can be designed
in a modular way: atomically consistent objects can be implemented indepen-
dently one from the other. Unfortunately, sequential consistency is not a local
property [8]. As we will see in Section 3, the sequentially consistent objects have
to cooperate to guarantee sequential consistency. From an operational point of
view, this translates as follows. As atomic consistency considers real time while
sequential consistency considers logical time, the way these consistency criteria
use cached values are very different. Hence, there is a tradeoff between the local-
ity of a consistency criterion and the timeliness (eager vs lazy) of the invalidation
strategy used in the protocol that implements it.

Allowing Atomic Objects to Coexist with Sequentially Consistent Objects 65

2.4 The Constraint-Based Approach for Sequential Consistency

As indicated in the Introduction, determining whether a given execution is se-
quentially consistent is an NP-complete problem [21]. As we have noticed, this
result rules out the possibility of designing efficient protocols providing sequen-
tially consistent histories and just these.

The Constraint-Based Approach. Hence, the idea we have developed in [13]
that consists in imposing additional constraints on histories in order to be able
to design efficient sequential consistency protocols. This approach is similar to
imposing constraints on view serializability for concurrency control protocols
[9,14]4. Let two operations conflict if both are on the same object x and one
of them is a write. The two following additional constraints have introduced in
[13].

Definition 5. WW -constraint. A history Ĥ satisfies the WW -constraint if any
pair of write operations are ordered under Ĥ.
OO-constraint. A history Ĥ satisfies the OO-constraint if any pair of conflicting
operations are ordered under Ĥ.

Hence, when Ĥ satisfies the WW -constraint, all its write operations are totally
ordered. Differently, when Ĥ satisfies the OO-constraint, the operations on each
object x ∈ X follow the reader/writer synchronization discipline (for each x, the
write operations are totally ordered, and the read operations are ordered with
respect to the write operations). The following theorems are stated and proved
in [13].

Theorem 2. [13] Let Ĥ = (H,→H) be a history that satisfies the WW -constraint.
Ĥ is sequentially consistent if and only if it is legal.
Let Ĥ = (H,→H) be a history that satisfies the OO-constraint. Ĥ is sequentially
consistent if and only if it is legal.

This theorem has important consequences. They mean that, to get sequential
consistency, a protocol based on such a constraint only needs to ensure that
the read operations are legal. In that way, efficient protocols ensuring sequential
consistency can be obtained.

Constraint-Based Protocols for Sequential Consistency. Several protocols pro-
viding a sequentially consistent shared memory abstraction on top of an asyn-
chronous message passing distributed system have been proposed. Among them,
the protocols introduced in [2,6], although they do not explicitly identify the
WW -constraint, are implicitly based on it. Differently, the protocols presented
in [13,16] are explicitly based on the WW -constraint.

The protocol described in [2] implements a sequentially consistent shared
memory abstraction on top of a physically shared memory and local caches. It
4 Interestingly, view equivalence can be considered as a special case of sequential con-

sistency, while strict view equivalence can be considered as a special case of atomic
consistency.

66 M. Raynal and M. Roy

uses an atomic n-queue update primitive and so implicitly relies on the the WW -
constraint. The protocol described in [6] assumes each local memory contains a
copy of the whole shared memory abstraction. It orders the write operations
using an atomic broadcast facility: all the writes are sent to all processes and
are delivered in the same order by each process. Read operations issued by a
process are appropriately scheduled to ensure their legality.

The protocol described in [13] considers a server site that has a copy of the
whole shared memory abstraction. The local memory of each process contains a
copy of a shared memory abstraction, but the state of some of its objects can be
“invalid”. When a process wants to read an object, it reads its local copy if it is
valid. When a process wants to read an object whose state is invalid, or wants to
write an object, it sends a request to the server. In that way the server orders all
write operations. An invalidation mechanism ensures that the reading by pi of
an object that is locally valid is legal. A variant of this protocol is described in
[4]. The protocol described in [16] uses a token that orders all write operations
and piggybacks updated values. As the protocol described in [6] it provides fast
read operations5.

A sequential consistency protocol fully based on the OO-constraint has been
proposed in [15]. This protocol has no centralized control, it is based on a pure
distributed control. A sequential consistency protocol for operations that can
span several objects is described in [20].

3 Combining Atomic Consistency and Sequential
Consistency

3.1 Two Types of Objects

We consider that each object accessed by a multiprocess program is either atom-
ically consistent or sequentially consistent, i.e., the objects are partitionned in
two subsets sc objects and ac objects such that if x ∈ ac objects its read/write
operations are atomically consistent, while if x ∈ sc objects its read/write op-
erations are sequentially consistent. Let Ĥ = (H,→H) be an execution history.
From a formal point of view, this means the following:

– If we suppress from Ĥ all the operations accessing the objects in sc objects,
we obtain an execution history Ĥ1 = (H1,→H1) that is atomically consis-
tent.

– If we suppress from Ĥ all the operations accessing the objects in ac objects,
we obtain an execution history Ĥ2 = (H2,→H2) that is sequentially consis-
tent.

This section presents a protocol providing such a combination of atomic
consistency and sequential consistency.
5 As shown in [6] atomic consistency does not allow protocols in which all read oper-

ations (or all write operations) are fast [8,12]. Differently, causal consistency allows
protocols where all operations are fast [3,5,18].

Allowing Atomic Objects to Coexist with Sequentially Consistent Objects 67

3.2 Underlying System

The concurrent program is made up n processes p1, . . . , pn sharing m objects (de-
noted x, y, . . .). The underlying system is made up of n + m sites, divided into
n process-sites and m object-sites (hence, without ambiguity, pi denotes both
a process and the associated site; Mx denotes the site hosting and managing
x). As in the previous section, the sites communicate through reliable channels
by sending and receiving messages. There are assumptions neither on the pro-
cessing speed of the sites, nor on message transfer delays. Hence, the underlying
distributed system is asynchronous.

To be as modular as possible, and in the spirit of clients/servers architectures,
the proposed solution allows a process and an object to communicate, but no
two processes -nor two objects- are allowed to send messages to each other. This
constraint makes easier the addition of new processes or objects into the system.

3.3 Control Variables

The OO-constraint is used to get both atomic consistency on the objects in
ac objects, and sequential consistency on the objects in sc objects. To that end,
a manager Mx is associated with each object x. This makes the protocol dis-
tributed with respect to the set of objects as there is no centralized control.
Basically, the manager Mx orders the write operations on the object x it is
associated with. As in other protocols (e.g., the protocol ensuring atomic consis-
tency described in [11]), and in order to get an efficient protocol, object values
are cached and the last writer of an object x is considered as its owner until
the value it wrote is overwritten or read by another process. The combination of
value invalidation, value caching and object ownership allows processes to read
cached values and to update the objects they own for free (i.e., without commu-
nicating with the corresponding managers). Depending on the read/write access
pattern, this can be very efficient.

Local variables of a process. As just indicated, the protocol is based on cached
copies and an invalidation strategy. A process pi manages the following local
variables:

– presenti[x] is a boolean variable that is true when pi has a legal copy of x
(i.e., a read of the current cached value of x would be a legal read). This
means that pi can then locally read its cached copy of x.

– Ci[x] is a cache containing a copy of x. Its value is meaningful only when
presenti[x] is true.

– owneri[x] is a boolean variable that is true if pi is the last writer of x. Let
us note that we have owneri[x] ⇒ presenti[x].

Local variables of an object manager. The site Mx associated with the object x
manages the following local variables:

68 M. Raynal and M. Roy

– Cx contains the last value of x (as known by Mx).
– ownerx contains a process identity or⊥. Its meaning is the following: ownerx =

i means that no process but pi has the last value of x (it is possible that Mx

does not know this value). Differently, if ownerx = ⊥, Mx has the last copy
of x. The owner of an object x (if any) is the only process that can modify
it.

– hlwx[1..n] is a boolean array, such that hlwx[i] is true iff pi has the last value
of x (hlwx stands for “hold last write of x”).

System initial state. Initially, only Mx knows the initial value of x which is
kept in Cx. So, we have the following initial values: ∀pi: ∀x: owneri[x] = false ,
presenti[x] = false , Ci[x]= undefined, ownerx = ⊥, hlwx[i] = false .

3.4 Behavior of a Manager for x ∈ ac objects

The behavior of the manager Mx of an object x ∈ ac objects is described in
Figure 3. It is made up of two statements that describe Mx’s behaviour when it
receives a message. The write req and read req messages are processed sequen-
tially.

– Mx receives write req (v) from pi.
In that case, pi has issued a w(x)v operation (and is not the current owner
of x). The manager invalidates all the cached copies of x that currently exist.

upon reception of write req (v) from pi:
(1) if (ownerx 	= ⊥) then send downgrade req (w, x) to pownerx ;
(2) wait downgrade ack (−) from pownerx

(3) else ∀j 	= i : hlwx[j] : do send downgrade req(w, x) to pj ;
(4) wait downgrade ack (−) from pj

(5) enddo
(6) endif;
(7) Cx ← v; ownerx ← i;
(8) hlwx[i] ← true ; ∀j 	= i : hlwx[j] ← false;
(9) send write ack () to pi

upon reception of read req () from pi:
(10) if (ownerx 	= ⊥) then send downgrade req(r, x) to pownerx ;
(11) wait downgrade ack (v) from pownerx ;
(12) Cx ← v; ownerx ← ⊥
(13) endif;
(14) hlwx[i] ← true ;
(15) send read ack (Cx) to pi

Fig. 3. Behavior of an Object Manager Mx for x ∈ ac objects

Allowing Atomic Objects to Coexist with Sequentially Consistent Objects 69

In that way, no process will be able to read in the future a copy older than
v, thereby ensuring atomic consistency

– Mx receives read req (v) from pi.
In that case, pi has issued a r(x) operation, and does not have the last value
of x. If x is currently owned by some process, Mx first gets the last value of
x from this process and downgrades this previous owner (lines 10-11), that
can only read its copy of x from now on. Then, it sends the current value of
x to pi (line 15) and updates hlwx[i] accordingly (line 14).

3.5 Behavior of a Manager for x ∈ sc objects

The behavior of the manager Mx of the object x is depicted in Figure 4. It
consists of three statements that describe Mx’s behaviour when it receives a
message. The write req and read req messages are processed sequentially6. The
check req messages are processed as soon as they arrive (let us notice they do
not modify Mx’s context).

upon reception of write req (v) from pi:
(1) if (ownerx 	= ⊥) then send downgrade req (r, x) to pownerx ;
(2) wait downgrade ack (−) from pownerx

(3) endif;
(4) Cx ← v; ownerx ← i;
(5) hlwx[i] ← true; ∀j 	= i : hlwx[j] ← false;
(6) send write ack () to pi

upon reception of read req () from pi:
(7) if (ownerx 	= ⊥) then send downgrade req (r, x) to pownerx ;
(8) wait downgrade ack (v) from pownerx ;
(9) Cx ← v; ownerx ← ⊥
(10) endif;
(11) hlwx[i] ← true;
(12) send read ack (Cx) to pi

upon reception of check req () from pi:
(13) let d =

(
hlwx[i] ∧ (no write req is currently processed)

)
;

(14) send check ack (d) to pi

Fig. 4. Behavior of an Object Manager Mx for x ∈ sc objects

– Mx receives write req (v) from pi.
In that case, pi has issued a w(x)v operation. If x is currently owned by some
process, Mx first downgrades this previous owner (lines 1-3). Then, Mx sets

6 Assuming no message is indefinitely delayed, it is possible for Mx to reorder waiting
messages if there is a need to favor some processes or some operations.

70 M. Raynal and M. Roy

Cx and ownerx to their new values (line 4), updates the boolean vector hlwx

accordingly (line 5), and sends back to pi an ack message indicating it has
taken its write operation into account (line 6).

– Mx receives read req (v) from pi.
In that case, pi has issued a r(x) operation, and does not have a legal copy
of x. If x is currently owned by some process, Mx first gets the last value of x
from this process and downgrades this previous owner (lines 7-10). Then, it
sends the current value of x to pi (line 12) and updates hlwx[i] accordingly
(line 11).

– Mx receives check req () from pi.
In that case, pi has got a new value for some object and queries Mx to know
if it still has the last value of x. As we will see, this inquiry is necessary for
pi to ensure its locally cached object values are legal. Mx answers true if pi

has the last value of x, otherwise it returns false .

3.6 Behavior of a Process

The behavior of a process pi is described in Figure 5. It is made of three state-
ments that are executed atomically (the procedure check legality(x) invoked at
line 4 and at line 11 is considered as belonging to the invoking statement). The
return statement terminates each write (line 7) and read operation (line 13).

– pi invokes wi(x)v.
If pi is the current owner of x, it was the last process that updated x. In
that case, it simply updates its current cached copy of x (line 6). This value
will be sent to Mx by pi when it will leave its ownership of x (lines 19-20).
If pi is not the owner of x, it first becomes the current owner (line 3) by
communicating with Mx (lines 1-2). As we have seen in Figure 3 if x ∈
ac objects, and in Figure 4if x ∈ sc objects, this entails the downgrading of
the previous owner if any. Then, pi executes the check legality(x) procedure.
This procedure is explained in a next item. It is the core of the protocol as
far as the OO-constraint and the legality of read operations are concerned.

– pi invokes ri(x).
If the local copy of x does not guarantee a legal read (presenti[x] is false), pi

gets the last copy from Mx (lines 8-9), updates accordingly its context (line
10) and executes the check legality(x) procedure (see next item).

– The check legality(x) procedure.
As we just claimed, this procedure is at the core of the protocol. It is invoked
each time pi questions Mx. This occurs when pi’s context is modified because
(1) it becomes the new owner of x (lines 1-4), or (2) it reads the value of x
from Mx (lines 8-11).
The aim of the check legality(x) procedure is to guarantee that all the values,
associated with objects in the set sc objects, defined as present in pi’s local
cache will provide legal read operations. To attain this goal, for each object
y not currently owned by pi but whose local readings by pi were previously
legal, pi questions My to know if its current copy is still legal (line 15). My

Allowing Atomic Objects to Coexist with Sequentially Consistent Objects 71

operation writei(x)v:
(1) if (¬owneri[x]) then send write req (v) to Mx;
(2) wait write ack () from Mx;
(3) owneri[x] ← true ; presenti[x] ← true ;
(4) check legality (x)
(5) endif;
(6) Ci[x] ← v;
(7) return ()

operation readi(x):
(8) if (¬presenti[x]) then send read req () to Mx;
(9) wait read ack (v) from Mx;
(10) presenti[x] ← true ; Ci[x] ← v;
(11) check legality (x)
(12) endif;
(13) return (Ci[x])

procedure check legality (x):
(14) ∀y such that (y ∈ sc objects ∧ presenti[y] ∧ ¬owneri[y] ∧ y 	= x)
(15) do send check req () to My;
(16) wait check ack (d) from My ;
(17) presenti[y] ← d
(18) enddo

upon reception of downgrade req (type, x):
(19) owneri[x] ← false;
(20) if (type= w) then presenti[y] ← false endif;

% When type=w, x is necessarily an atomically consistent object %
(21) send downgrade ack (Ci[x]) to Mx

Fig. 5. Behavior of a Process pi

answers pi if it has the last value of y (line 16), and accordingly pi updates
presenti[y].
The check legality procedure acts as a reset mechanism that invalidates ob-
ject copies that cannot be guaranteed to provide legal read operations.

– pi receives downgrade req(x).
In that case, pi is the current owner of x. It leaves it ownership on x (line
19) and sends the last value of x to Mx (line 20). Note that the current value
of x is still present at pi.

3.7 Considering a Single Criterion

Let us consider the particular case where all the objects belong to sc objects. In
this case there are only managers executing the behavior described in Figure 4

72 M. Raynal and M. Roy

(Figure 3 disappears from the protocol). We then obtain the sequential consis-
tency protocol based on the OO-constraint described in [15] (where the reader
can find a correctness proof).

At the other extreme, if there is no sequentially consistent object (sc objects
is empty), the protocol simplifies as follows. Not only Figure 4 disappears, but
the procedure check legality() disappears also (as its aim is to check if values
cached for sequential consistency are not too old). The protocol we obtain is
then the atomic consistency protocol described in [11].

4 Concluding Remarks

This paper has explored a combination of sequential consistency with atomic
consistency. As it is based on a consistent merging of the total orders defining
each of these consistency criteria, the semantics of the proposed combination is
well defined. Interestingly, the proposed protocol encompasses previous protocols
designed for a single criterion. In that sense, this protocol provides a “global
picture” on the way these consistency criteria can be implemented.

Another way to combine sequential consistency and atomic consistency has
been investigated in [17]. For each object, this combination provides the pro-
cesses with a single write operation and two read operations, namely, an atomic
read operation and a sequentially consistent read operation. While the first read
operation provides a process with the last “physical” value of an object, the
second read operation provides its caller with the last value of the object (last
referring here to a common logical time on which all the processes do agree).

References

1. Adve S.V. and Garachorloo K., Shared Memory Models: a Tutorial. IEEE Com-
puter, 29(12):66-77, 1997.

2. Afek Y., Brown G. and Merritt M., Lazy Caching. ACM Transactions on Program-
ming Languages and Systems, 15(1):182-205, 1993.

3. Ahamad M., Hutto P.W., Neiger G., Burns J.E. and Kohli P., Causal memory:
Definitions, Implementations and Programming. Distributed Comp., 9:37-49, 1995.

4. Ahamad M. and Kordale R., Scalable Consistency Protocols for Distributed Ser-
vices. IEEE Transactions on Parallel and Distributed Systems, 10(9):888-903, 1999.

5. Ahamad M., Raynal M. and Thia-Kime G., An Adaptive Protocol for Implement-
ing Causally Consistent Distributed Services. Proc. 18th IEEE Int. Conf. on Dis-
tributed Computing Systems, ieee Computer Society Press, pp. 86-93, 1998.

6. Attiya H. and Welch J.L., Sequential Consistency versus Linearizability. ACM
Transactions on Computer Systems, 12(2):91-122, 1994.

7. Garg V.K. and Raynal M., Normality: a Correctness Condition for Concurrent
Objects. Parallel Processing Letters, 9(1):123-134, 1999.

8. Herlihy M.P. and Wing J.L., Linearizability: a Correctness Condition for Concur-
rent Objects. ACM TOPLAS, 12(3):463-492, 1990.

9. Ibaraki T., Kameda T. and Minoura T., Serializability with Constraints. ACM
Transactions on Database Systems, 12(3):429-452, 1987.

Allowing Atomic Objects to Coexist with Sequentially Consistent Objects 73

10. Lamport L., How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C28(9):690-691, 1979.

11. Li K. and Hudak P., Memory Coherence in Shared Virtual Memory Systems. ACM
Transactions on Computer Systems, 7(4):321-359, 1989.

12. Mizuno M., Nielsen M.L. and Raynal M., An Optimistic Protocol for a Linearizable
Distributed Shared Memory System. Parallel Proc. Letters, 6(2):265-278, 1996.

13. Mizuno M., Raynal M. and Zhou J.Z., Sequential Consistency in Distributed Sys-
tems. Proc. Int. Workshop on Theory and Practice of Distributed Systems, Springer
Verlag LNCS #938, pp. 224-241, 1994.

14. Papadimitriou C., The Theory of Concurrency Control. Comp. Science Press, 1986.
15. Raynal M., Sequential Consistency as Lazy Linearizability. 14th ACM Symposium

on Parallel Algorithms and Architectures (SPAA’02), pp. 151-152, 2002.
16. Raynal M., Token-Based Sequential Consistency. Journal of Computer Systems

Science and Engineering, 17(6):359-365, 2002.
17. Raynal M., Roy M. and Tutu C., A simple Protocol Offering Both Atomic Read

Operations and Sequentially Consistent Read operations. Proc. 19th Int. Con-
ference on Advanced Information Networking and Applications (AINA’05), IEEE
Computer Society Press, 2005.

18. Raynal M. and Schiper A., From Causal Consistency to Sequential Consistency in
Shared Memory Systems. Proc. 15th Int. Conf. on Foundations of Soft. Technology
and Theor. Computer Science, Springer-Verlag LNCS #1026, pp. 180-194, 1995.

19. Raynal M. and Schiper A., A Suite of Formal Definitions for Consistency Criteria
in Distributed Shared Memories. Proc. 9th Int. IEEE Conference on Parallel and
Distributed Computing Systems (PDCS’96), pp. 125-131, 1996.

20. Raynal M. and Vidyasankar K., A Distributed Implementation of Sequential Con-
sistency with Multi-Object Operations. 24th IEEE Int. Conf. on Distributed Com-
puting Systems (ICDCS’04), IEEE Computer Society Press, pp. 544-551, 2004.

21. Taylor R.N., Complexity of Analyzing the Synchronization Structure of Concurrent
Programs. Acta Informatica, 19:57-84, 1983.

22. Zhan Z., Ahamad M. and Raynal M., Mixed Consistency Model: Meeting Data
Sharing Needs of Heterogeneous Users. Proc. 25th IEEE Int. Conference on Dis-
tributed Computing Systems (ICDCS’05), IEEE Computer Society Press, 2005.

An Approach to the Implementation of the

Dynamical Priorities Method

Valery A. Sokolov and Eugeny A. Timofeev

Yaroslavl State University,
150 000,Yaroslavl, Russia

{sokolov, tim}@uniyar.ac.ru

Abstract. In this work we consider a problem of optimizing the data
transmission mechanism of Internet transport protocols. We use a pri-
ority discipline without time measurements by a receiver, which has the
property of universality. The possibility of an application of this disci-
pline for improving performances of the original Transmission Control
Protocol (TCP) is discussed. We propose to apply the dynamical prior-
ity method to avoid time measurements by the receiver. Instead of this
only mean queue lengths at the sending side have to be measured.

1 Introduction

We consider the problem of management optimization for a complex service
system. Basic characteristic features of the considered system are:

– there is the possibility of the feed-back;
– the probability of the feed-back depends both on external (unknown) reasons

and on the service discipline;
– the duration of customer service depends on time;
– there is a great number of customers with sharply various service durations.

The basic example of the considered problem is the management of the Trans-
mission Control Protocol (TCP) [2].

It is easy to see that the listed properties hold for the TCP.
The main criteria of optimization are the minimization of losses of arriving

customers and the minimization of the sojourn-time.
To optimize the management (see, for example, [4], [3]), adaptive service dis-

ciplines are usially used, which are adjusted to an input process. For improving
the quality of service it is desirable to know as much as possible about charac-
teristics of the system.

The duration of service is obviously one of the major characteristics. However,
its measurements can happen to be impossible.

Thus, for example, in the TCP the duration of service contains an addend
equal to the received time, but the standard TCP does not transfer this param-
eter.

In [5], [6] some updates of the TCP (TCP with an adaptive rate) are pre-
sented, which use the received time, and due to it the quality of the work is going
upward. However, we have to bring into use an additional field to the TCP.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 74–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Approach to the Implementation of the Dynamical Priorities Method 75

In [1] we have described a service discipline which is also adaptive, but it
uses only queue lengths and does not demand time measurements by a receiver.

In our work an algorithm of a choice of parameters for the presented ser-
vice discipline is described. This discipline can be applied to the TCP without
modifying it.

2 The Model

In this section a model of the considered service system will be described. We
stress that the model is general, but the performance of the TCP keeps within
this model.

2.1 General Characteristics of the System

1. The input process describes a sequence of customers to be served. Each
customer consists of some number of segments. For simplicity, we suppose
that the size of a segment is fixed and does not vary.

2. All segments arrive at the total queue.
3. Under available characteristics of customers and the current parameters of

the service discipline some segments are chosen for service. The rules of the
choice will be described below.

4. The service of the chosen segments consists in the following:
– a segment is sent to the receiver;
– if the confirmation does not come through the retranslation time, the

segment is fed back to the total queue (the definition of the retranslation
time will be described below);

– if the confirmation comes, the segment is removed from the system.

We stress that here we do not consider rules of the creation of the confirma-
tion because our main goal is the optimization of the data transfer.

Note, that the size of the window established by the receiver is much greater
than a window for the data transfer, therefore it can be not taken into account
(as it does occur in real systems).

2.2 Service of a Customer

Before every transmission of segments of the considered customer the following
key parameters are thought to be known:

1. N is the number of segments in the total queue;
2. τi is the time of the previous transmission of the i-th segment;
3. νi is the number of the previous transmissions of the i-th segment.

The retransmission timer functions at the moment

t = min
i

τi + R0,

76 V.A. Sokolov and E.A. Timofeev

where R0 is a constant which specifies the time required for passing a segment
from the sender to the receiver and for returning the confirmation (greater than
the Round Trip Time). By these parameters and by auxiliary parameters of
the choice algorithm described below we can find the value W , where W is
the number of segments (the width of a window). These W segments are to
be transmitted. After receiving confirmations for all transmitted segments, the
service of the customer is terminated.

2.3 The Algorithm of the Choice of Transmitted Segments

The basis of the algorithm of the choice of transmitted segments for a fixed
window width W is a probabilistic-divided discipline which is described in [1]
for service systems. Now we introduce parameters of the probabilistic-divided
service discipline.

To each segment we assign a type, i.e. one of the numbers 0, 1, 2, . . . , 2n (n
is a given parameter) by the following rules:

– at the moment of arrival all segments receive the type 0;
– after obtaining the acknowledgement with the indication of a transmission

mistake of a segment of type i < n, or if the retransmission timer fires on
a segment of type i, the segment receives the type 2[(i + 1)/2] + 1 with
the probability p[(i+1)/2] and the type 2[(i + 1)/2] + 2 with the probability
1− p[(i+1)/2];

– if i = n, the type does not vary.

Here, the probabilities p = (p0, p1, . . . , pn−1) are auxiliary parameters of the
algorithm.

Another auxiliary parameter of the algorithm is the permutation

π = (π0, π1, . . . , π2n)

of the numbers 0, 1 . . . , 2n.
The required W segments are defined by the permutation π: first, all segments

of type π0, second, all segments of type π1, etc. up to W segments.
Thus, to finish the description of the model, we have to specify the meth-

ods of changing auxiliary parameters of the algorithm: the permutation π, the
probabilities p and the window width W .

3 The Method of Finding the Auxiliary Parameters

At the initial moment the auxiliary parameters are set as follows:

W = 1, π = (0, 1, . . . , 2n), p = (1/2, . . . , 1/2).

For recalculation of the auxiliary parameters the following characteristics will
be used:

Li(t) is a number of not transferred segments of type i at the moment t
(0 ≤ i ≤ 2n);

An Approach to the Implementation of the Dynamical Priorities Method 77

P (W) is the frequency of erratic transmission of a segment at the set width
of the window W (it is clear that the values P (W) will be known only for those
values W which were set during the transmission, and for estimation of values
P (W) at other points we shall use the linear interpolation);

RTT (t) is an estimation of the time required for passing a segment from a
sender up to a receiver and for returning the confirmation (Round Trip Time).

These characteristics are recalculated before each moment of the transmis-
sion.

3.1 The Algorithm of Changing the Window Width W

If all segments have been transferred and P (W) = 0, the window width W is
doubled.

If P (W) > 0, we do the following.
Considering the value P (W) as a probability of the erratic transmission and

the value RTT (t) as the transfer time of a segment, we calculate an average time
τ(W) of waiting for the segment till the complete sending.

Let τ0(t) be an average retranslation time of a segment at the present mo-
ment, and T0 be an auxiliary constant which defines an essential difference of
average retranslation time.

If τ(W) < τ0(t)−T0, we increase the window so that τ(W) ≈ τ0(t)−T0. For
the calculation we extrapolate the value P (W) linearly by the last two values,
and we take the value RTT (t) as a transfer time.

If τ(W) > τ0(t) + T0, we reduce the window so that τ(W) ≈ τ0(t)− T0.
If |τ(W) − τ0(t)| ≤ T0, the window is left without changing.
After the choice of a window width, we change the auxiliary parameters: the

permutation π and probabilities p.

3.2 The Algorithm of Changing π and p

When making the choice of these parameters, it is necessary to follow some
heuristic rules, for example: the decreasing of the total queue of not transmitted
segments, the decreasing of the time of residence in the system, etc. It is also
possible to choose linear combinations of these rules and to optimize coefficients
of this linear combination.

Under a chosen heuristic rule we obtain an optimization problem with con-
tinuous parameters p and with discrete parameters, namely, a permutation π. If
the optimization problem is solved by the algorithm of the sequential improve-
ment of the parameters p (for example, by the gradient method), then problems
arise in the case when for some i the next value pi = 0 or pi = 1. In this case it is
necessary to apply the algorithm of the choice of the following permutation from
the work [1], which by a given permutation π and a given number i calculates
probabilities p̃ and a new permutation π̃, for which p̃i = 1 (if pi = 0) and p̃i = 0
(if pi = 1), and mean queue lengths are the same as for the parameters π and p.

78 V.A. Sokolov and E.A. Timofeev

4 Conclusion

We have shown how it is possible to design a probabilistic-divided service dis-
cipline for managing the packet transfer in a network. The main advantage of
such an approach consists in the fact that we eliminate time measurements of
the receiver.

References

1. Sokolov V. A. , Timofeev E.A. : Dynamical Priorities without Time Measurement
and Modification of the TCP, LNCS N.1649, (2001), p.240-245.

2. Stevens W.R. : TCP/IP Illustrated. Volume 1: The Protocols. Addison-Wesley, New
York, 1994.

3. Balakrishnan H., Padmanabhan V., Katz R. : The Effects of Asymmetry on TCP
Performance. ACM MobiCom, 9, 1997.

4. Brakmo L., O’Malley S., Peterson L. : TCP Vegas: New Techniques for Congestion
Detection and Avoidance. ACM SIGCOMM 8 (1994), p.24-35.

5. Alekseev I.V., Sokolov V.A. : The Adaptive Rate TCP. Model. and Anal. Inform.
Syst. 6, N.1 (1999), p.4–11.

6. Alekseev, I.V., Sokolov, V.A.: ARTCP: Efficient Algorithm for Transport Protocol
for Packet Switched Networks. LNCS, N. 2127, Springer-Verlag (2001), p.159–174.

7. Alekseev, I.V., Sokolov, V.A.: Modelling and Traffic Analysis of the Adaptive Rate
Transport Protocol. Future Generation Computer Systems, Number 6, Vol.18. NH
Elsevier (2002), p.813–827.

Information Flow Analysis for VHDL

Terkel K. Tolstrup, Flemming Nielson, and Hanne Riis Nielson

Informatics and Mathematical Modelling, Technical University of Denmark
{tkt, nielson, hrn}@imm.dtu.dk

Abstract. We describe a fragment of the hardware description language
VHDL that is suitable for implementing the Advanced Encryption Stan-
dard algorithm. We then define an Information Flow analysis as required
by the international standard Common Criteria. The goal of the analysis
is to identify the entire information flow through the VHDL program.
The result of the analysis is presented as a non-transitive directed graph
that connects those nodes (representing either variables or signals) where
an information flow might occur. We compare our approach to that of
Kemmerer and conclude that our approach yields more precise results.

1 Introduction

Modern technical equipment often depends on the reliable performance of em-
bedded systems. The present work is part of an ongoing effort to validate the
security properties of such systems. Here it is a key requirement that the pro-
grams maintain the confidentiality of information it handles. To document this,
an evaluation against the criteria of the international standard Common Criteria
[13] is a main objective.

In this paper we focus on the Covert Channel analysis described in Chapter
14 of [13]. The main technical ingredient of the analysis is to provide a descrip-
tion of the direct and indirect flows of information that might occur. This is
then followed by a further step where the designer argues that all information
flows are permissible — or where an independent code evaluator asks for further
clarification. We present the result of the analysis as a directed graph: the nodes
represent the resources, and there is a direct edge from one node to another
whenever there might be a direct or indirect information flow from one to the
other. In general, the graph will be non-transitive [4,14].

The programming language used is the hardware description language VHDL
[7]. Systems consist of a number of processes running in parallel where each pro-
cess has its own local data space and communication between processes is per-
formed at synchronization points using signals. In Section 2 we give an overview
of the fragment VHDL1. We present a formal Semantics of VHDL1 in Section 3.

The problem of analysing VHDL programs has already been addressed in
previously published approaches. The paper by Hymans [6] uses abstract inter-
pretation to give an over-approximation of the set of reachable configurations
for a fragment of VHDL not unlike ours. This suffices for checking safety prop-
erties: if the safety property is true on all states in the over-approximation it

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 79–98, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 T.K. Tolstrup, F. Nielson, and H.R. Nielson

will be true for all executions of the VHDL program. Hence when synthesizing
the VHDL specification one does not need to generate circuits for enforcing the
reference monitor (called an observer in [6]).

The paper by Hsieh and Levitan [5] considers a similar fragment of VHDL and
is concerned with optimising the synthesis process by avoiding the generation
of circuits needed to store values of signals. One component of the required
analyses is a Reaching Definitions analysis with a similar scope to ours although
specified in a rather different manner. Comparing the precision of their approach
(to the extent actually explained in the paper) with ours, we believe that our
analysis is more precise in that it allows also to kill signals being set in other
processes than where they are used. Furthermore the presented analysis is only
correct for processes with one synchronization point, because definition sets are
only influenced by definitions in other processes at the end (or beginning) of
a process. Therefore definitions is lost if they are present at a synchronization
point within the process but overwritten before the end of the process.

Our approach is based around adapting a Reaching Definitions analysis
(along the lines of [9]) to the setting of VHDL1. A novel feature of our analysis is
that it has two components for tracking the flow of values of active signals: one is
the traditional over-approximation whereas the other is an under-approximation.
Finally, a Reaching Definitions analysis tracks the flow of variables and present
values of signals. The details are developed in Section 4.

The first step of the Information Flow analysis determines the local depen-
dencies for each statement; this takes the form of an inference system that is
local to each process. The second step constructs the directed graph by per-
forming the necessary “transitive closure”; this takes the form of a constraint
system and makes use of the Reaching Definitions analysis. The results obtained
are therefore more precise than those obtained by more standard methods like
that of Kemmerer [8] and only ignore issues like timing and power-consumption.
The analysis is presented in Section 5 and has been implemented in the Succinct
Solver Version 1.0 [10,11] and has been used to validate several programs for
implementing the NSA Advanced Encryption Standard (AES) [17].

2 Background

VHDL1 is a fragment of VHDL that concentrates on the behavioral specification
of models. A program in VHDL1 consists of entities and architectures, uniquely
identified by indexes ie, ia ∈ Id. An entity describes how an architecture is
connected to the environment. The architectures comprise the behavioral or
structural specification of the entities.

An entity specifies a set of signals referred to as ports (prt ∈ Prt), each port
is represented by a signal (s ∈ Sig) used for reference in the specification of the
architecture; furthermore a notion of the intended usage of the signal is specified
by the keywords in and out defining if the signals value can be altered or read
by the environment, and the type of the signal’s value (either logical values or
vectors of logical values).

Information Flow Analysis for VHDL 81

pgm ∈ Pgm programs
pgm ::= ent | arch | pgm1 pgm2

ent ∈ Ent entities
ent ::= entity ie is port(prt); end ie;

prt ∈ Prt ports
prt ::= s : in type | s : out type | prt1; prt2

type ∈ Type types
type ::= std logic | std logic vector(z1 downto z2)

| std logic vector(z1 to z2)

arch ∈ Arch architectures
arch ::= architecture ia of ie is begin css; end ia;

css ∈ Css concurrent statements
css ::= s <= e | s(z1 downto z2) <= e | s(z1 to z2) <= e

| ip : process decl; begin ss; end process ip
| ib : block decl; begin css; end block ib | css1|css2

decl ∈ Decl declarations
decl ::= variable x : type := e | signal s : type := e | decl1; decl2

ss ∈ Stmt statements
ss ::= null | x := e | x(z1 downto z2) := e | x(z1 to z2) := e | s <= e

| s(z1 downto z2) <= e | s(z1 to z2) <= e | wait on S until e
| ss1; ss2 | if e then ss1 else ss2 | while e do ss

e ∈ Exp expressions
e ::= m | a | x | x(z1 downto z2) | x(z1 to z2) | s | s(z1 downto z2)

| s(z1 to z2) | opu
m e | e1 opb

m e2 | e1 opa e2

Fig. 1. The subset VHDL1 of VHDL

An architecture model is specified by a family of concurrent statements (css ∈
Css) running in parallel; here the index ip ∈ Id is a unique identifier in a finite
set of process identifiers (Ip ⊆fin Id). Each process has a statement (ss ∈ Stmt)
as body and may use logical values (m ∈ LV al), vectors of logical values (we
write a ∈ V V al, where a has the form ”m1 . . . mk” where mi ∈ LV al), local
variables (x ∈ V ar) as well as signals (s ∈ Sig, S ⊆fin Sig). When accessing
variables and signals we always refer to their present value and when we assign to
variables it is always the present value that is modified. However, when assigning
to a signal its present value is not modified, rather its so-called active value is
modified; this representation of signal’s values, as illustrated in Figure 2, is used
to take care of the physical aspect of propagating an electrical current through a
system, the time consumed by the propagation is usually called a delta-cycle. The
wait statements are synchronization points, where the active values of signals are
used to determine the new present values that will be common to all processes.

Concurrent statements could also be block statements that allow local signal
declarations for the use of internal communication between processes declared

82 T.K. Tolstrup, F. Nielson, and H.R. Nielson

10

Past Now Delta Future

Present
Signals Signals

Active

Fig. 2. The representation of abstract time in the signal store

within the block. The index ib ∈ Id is a unique identifier in a finite set of block
identifiers (Ib ⊆fin Id). The scope of the local signals declared in the block
definition is within the concurrent statements specified inside the block.

Signal assignment can also be performed as a concurrent statement, this
corresponds to a process that is sensitive to the free signals in the right-hand
side expression and that has the same assignment inside [2].

Since VHDL describe digital hardware we are concerned with the details of
electrical signals, and it is therefore necessary to include types to represent dig-
itally encoded values. We consider logical values (LV al) of the standard logic
type std logic, that includes traditional boolean values as well as values for elec-
trical properties. VHDL1 also allow the usage of vectors of logical values, values
of this type is written using double quotes (e.g. ”1”
= ’1’). There are a number
of arithmetic operators available on vectors of logical values.

The formal syntax is given in Figure 1. In VHDL it is allowed to omit com-
ponents of wait statements. Writing FS(e) for the free signals in e, the effect
of ’on FS(e)’ may be obtained by omitting the ’on S’ component, and the ef-
fect of ’until true’ may be obtained by omitting the ’until e’ component. (In
other words, the default values of S and e are FS(e) and true, respectively.)
Semantically, S is the set of signals waited on, i.e. at least one of the signals of
S must have a new active value, and e is a condition on the new present values
that must be fulfilled, in order to leave the wait statement.

In VHDL1 the notion of signals is simplified with respect to full VHDL and
thus does not allow references further into time than the following delta-cycle.
This not only simplifies the analysis but also simplifies defining the semantics:
Of the many accounts to be found in the literature [3,16] we have found the
one of [16] to best correspond to our practical experiments, based on test pro-
grams simulated with the ModelSim SE 5.7d VHDL simulator. Even with this
restriction VHDL1 is sufficiently expressive to deal with the programs of the
AES implementation.

3 Structural Operational Semantics

The main idea when defining the semantics for VHDL1 programs is to execute
each process by itself until a synchronization point is reached (i.e. a wait state-
ment). When all processes of the program have reached a synchronization point
synchronization is handled, while taking care of the resolution of signals in case
a signal has been assigned different values by the processes. This synchroniza-
tion will leave the processes in a state where they are ready either to continue
execution by themselves or wait for the next synchronization.

Information Flow Analysis for VHDL 83

Basic semantic domains. The syntax of programs in VHDL1 is limited to state-
ments operating on a state of logical values. These logical values are defined as
v ∈ LV alue = {’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’, ’-’} where the values indicate the
properties

’U’ Uninitialized ’X’ Forcing Unknown ’0’ Forcing zero
’1’ Forcing one ’Z’ High Impedance ’W’ Weak Unknown
’L’ Weak zero ’H’ Weak one ’-’ Don’t care

these values are said to capture the behavior of an electrical system better than
traditional boolean values [2].

Furthermore we have vectors of logical values a ∈ AV alue = LV alue∗. We
have a function mapping logicals in the syntax to logical values in the semantics
L : LV al → LV alue, and vectors of logical values to their semantical equivalence
A : V V al → AV alue. The semantical values are collected in the set V alue =
LV alue 'AV alue.

Constructed semantic domains. VHDL1 includes local variables and signals. The
values of the local variables are stored in a local state. The local state is a
mapping from variable names to logical values.

σ ∈ State = (V ar → V alue)

The idea is that we have a local state for each process, keeping track of assign-
ments to local variables encountered in the execution of the process so far.

For communication between the processes we have the signals, the values of
signals are stored in local states. The processes can communicate by synchroniz-
ing the signals of their local signal state with other processes.

ϕ ∈ Signals = (Sig → ({0, 1} ↪→ V alue))

The value assigned to a signal is available after the following synchronization,
therefore we keep the present value of a signal s in ϕ s 0. In ϕ s 1 we store
the assigned value, meaning that it is available after a delta-cycle. Each signal
state has a time line for each signal. Values in the past are not used and therefore
forgotten by the semantics; in VHDL1 it is not possible to assign values to signals
further into the future than one delta-cycle.

All signals have a present value, so ϕ s 0 is defined for all s. Not all signals
need to be active meaning they have a new value waiting in the following delta-
cycle, thus ϕ s 1 need not be defined; hence we use {0, 1} ↪→ V alue in the
definition of the signal state to indicate that it is a partial function.

The semantics handles expressions following the ideas of [12]. For expressions

E : Expr → (State× Signals ↪→ V alue)

evaluates the expression. The function is defined in Table 1. Note that for signals
we use the current value of the signal, i.e. ϕ s 0.

84 T.K. Tolstrup, F. Nielson, and H.R. Nielson

Table 1. Semantics of Expressions

E [[m]]〈σ, ϕ〉 = L[[m]]
E [[a]]〈σ, ϕ〉 = A[[a]]
E [[x]]〈σ, ϕ〉 = σ x
E [[x(z1 downto z2)]]〈σ, ϕ〉 = split(σ x, z1, z2)
E [[s]]〈σ, ϕ〉 = ϕ s 0
E [[s(z1 downto z2)]]〈σ, ϕ〉 = split(ϕ s 0, z1, z2)
E [[opu

m e]]〈σ, ϕ〉 = opu
m v where E [[e]]ϕ = v

and opu
m v defined

E [[e1 opb
m e2]]〈σ, ϕ〉 = v1 opb

m v2 where E [[e1]]ϕ = v1

and E [[e2]]ϕ = v2

and v1 opb
m v2 defined

E [[e1 opa e2]]〈σ, ϕ〉 = v1 opa v2 where E [[e1]]ϕ = v1

and E [[e2]]ϕ = v2

and v1 opa v2 defined

In the specification of the Semantics all vector values and definitions are
normalized to the direction of ranging from a smaller index to a larger index.
This simplification allows us to consider a significantly smaller number of rules.
We define the function split which withdraws the elements of a vector in the
range specified by the last two parameters (split : a× z × z → a).

3.1 Statements

The semantics of statements and concurrent statements are specified by transi-
tion systems, more precisely by structural operational semantics. For statements
we shall use configurations of the form:

〈ss′, σ, ϕ〉 ∈ Stmt′ × State× Signals

Here Stmt′ refers to the statements from the syntactical category Stmt with
an additional statement (final) indicating that a final configuration has been
reached. Therefore the transition relation for statements has the form:

〈ss, σ, ϕ〉 ⇒ 〈ss′, σ′, ϕ′〉

which specifies one step of computation. The transition relation is specified in
Table 2 and briefly commented upon below.

An assignment to a signal is defined as an update to the value at the delta-
time, i.e. ϕ s 1. We use the notation ϕ[i][s $→ v] to mean ϕ[s $→ ϕ(s)[i $→ v]]. For
updating the variable and signal store with vector values we use the notation
σ[x(zi . . . zj) � v] to mean σ[x $→ σ(x)[zi $→ v1] . . . [zj $→ vj−i]], similarly for
signals.

The wait statement is handled in Section 3.2, along with the handling of the
concurrent processes. This is due to the fact that the wait statement is in fact a
synchronization point of the processes.

Information Flow Analysis for VHDL 85

Table 2. Statements

[Local Variable Assignment] :
〈x := e, σ, ϕ〉 ⇒ 〈final, σ[x �→ v], ϕ〉 where E [[e]]〈σ, ϕ〉 = v

〈x(z1 downto z2) := e, σ, ϕ〉 ⇒ 〈final, σ[x(z1 . . . z2) � v], ϕ〉
where E [[e]]〈σ, ϕ〉 = v

[Signal Assignment] :

〈s <= e, σ, ϕ〉 ⇒ 〈final, σ, ϕ[1][s �→ v]〉 where E [[e]]〈σ, ϕ〉 = v

〈s(z1 downto z2) <= e, σ, ϕ〉 ⇒ 〈final, σ, ϕ[1][s(z1 . . . z2) � v]〉
where E [[e]]〈σ, ϕ〉 = v

[Skip] :
〈null, σ, ϕ〉 ⇒ 〈final, σ, ϕ〉

[Composition] :
〈ss1, σ, ϕ〉 ⇒ 〈ss′1, σ′, ϕ′〉

〈ss1; ss2, σ, ϕ〉 ⇒ 〈ss′1; ss2, σ′, ϕ′〉 where ss′1 ∈ Stmt

〈ss1, σ, ϕ〉 ⇒ 〈final, σ′, ϕ′〉
〈ss1; ss2, σ, ϕ〉 ⇒ 〈ss2, σ′, ϕ′〉

[Conditional] :
〈if e then ss1 else ss2, ϕ〉 ⇒ 〈ss1, σ, ϕ〉 if E [[e]]〈σ, ϕ〉 = ’1’
〈if e then ss1 else ss2, ϕ〉 ⇒ 〈ss2, σ, ϕ〉 if E [[e]]〈σ, ϕ〉 = ’0’

[Loop] :
〈while e do ss, σ, ϕ〉 ⇒ 〈if e then (ss;while e do ss) else null, σ, ϕ〉

3.2 Concurrent Statements

The semantics for concurrent statements handles the concurrent processes and
their synchronizations of a VHDL1 program. We rewrite process declarations
into statements so the process declaration i: process decli; begin ssi; end
process i is rewritten to null; while ’1’ do ssi as the intention is that
the statement ss is repeated indefinitely.

The transition system for concurrent statements has configurations of the
form:

‖i∈I 〈ss′i, σi, ϕi〉
for I ⊆fin Id and ss′i ∈ Stmt′, σi ∈ State, ϕi ∈ Signals for all i ∈ Id. Thus
each process has a local variable and signal state.

The initial configuration of a VHDL1 program is:

‖i∈I 〈null; while true do ssi, σ
0
i , ϕ0

i 〉

The ith process uses an initial state for signals defined by the Semantics for
declarations of signals. If no initial value is specified the following are used:

σ0
i x = ’U’ and ϕ0

i s 0 = ’U’ for all non-vector signals used in the process
ssi. All vectors has a string of ’U’’s corresponding to the length of the vector
(i.e. ”U...U”). ϕ0

i s 1 is undef for all signals used in the process ssi.

86 T.K. Tolstrup, F. Nielson, and H.R. Nielson

Table 3. Concurrent statements

[Handle non-waiting processes (H)] :
〈ssj , σj , ϕj〉 ⇒ 〈ss′j , σ′

j , ϕ
′
j〉

‖i∈I∪{j} 〈ssi, σi, ϕi〉 =⇒‖i∈I∪{j} 〈ss′i, σ′
i, ϕ

′
i〉

where ss′i = ssi ∧ σ′
i = σi ∧ ϕ′

i = ϕi for all i 	= j.

[Active signals (A)] :
‖i∈I 〈wait on Si until ei; ssi, σi, ϕi〉 =⇒‖i∈I 〈ss′i, σi, ϕ

′
i〉

if ∃i ∈ I. active(ϕi)
where

ϕ′
i s 0 =

{
fs{{vj |ϕj s 1 = vj}} if ∃j ∈ I. ϕj s 1 is defined
ϕi s 0 otherwise

ϕ′
i s 1 = undef

ss′i =

⎧⎨⎩
ssi if ((∃s ∈ Si. ϕi s 0 	= ϕ′

i s 0)∧
E [[ei]]〈σ′

i, ϕ
′
i〉 =′ 1′)

wait on Si until bi; ssi otherwise

The transition relation for concurrent statements has the form:

‖i∈I 〈ss′i, σ, ϕi〉 =⇒‖i∈I 〈ssi
′′, σ′

i, ϕ
′
i〉

which specifies one step of computation.
The transition relation is specified in Table 3 and explained below.
As mentioned the idea when defining the semantics of programs in VHDL1 is

that we execute processes locally until they have all arrived at a wait statement,
this is reflected in the rule [Handle non-waiting processes (H)].

When all processes are ready to execute a wait statement we perform a
synchronization covered by the rule [Active signals (A)]. If one signal waited
for is active, those processes waiting for that signal may proceed; this is expressed
using the predicate active(ϕ) defined by

active(ϕ) ≡ ∃s∃v : ϕ s 1 = v

The delta-time values of signals will be synchronized for all processes and
in order to do this we use a resolution function fs : multiset(V alue) → V alue.
Thus fs combines the multi-set of values assigned to a signal into one value that
then will be the new (unique) value of the signal.

Notice that even though a signal that a wait statement is waiting for becomes
active, it is not enough to guarantee that it proceeds with its execution. This is
because we have the side condition ’until e’. This is reflected in the definition
of the statement ss′i of the next configuration. Notice that the state of local
variables is unchanged.

3.3 Architectures

The Semantics for architectures basically initializes the local variable and signal
stores for each process and rewrites the other constructions to processes. Con-

Information Flow Analysis for VHDL 87

current assignments are rewritten to processes and blocks are handled by adding
the signals the block declares to the scope of the processes declared inside the
block. Vector variables or signals declared using the to specifier, where the value
is reversed to match the expected ordering in the Semantics of expressions and
statements.

4 Reaching Definitions Analysis

The main purpose of the Reaching Definitions analysis is to gather information
about which assignments may have been made and not overwritten, when the
execution reaches each point in the program.

The semantics divides signal states into two parts, namely the present value
of a signal and the active value of a signal. Following this the analysis is divided
into two parts as well, one for the active value of a signal and one for local
variables and the present value of a signal. The two parts are connected since
the active values of a signal influence the present value of the signal after the
following synchronization. Therefore we will first define the analysis of active
signals in Section 4.1, and then, that of the local variables and present values of
signals in Section 4.2.

The analysis for active signals is concerned only with a single process, and
thus has no information about the other processes. It collects information about
which signals might be active in order to gather all the influences on the present
value; this information is gathered for the process i by an over-approximation
analysis of the active signals RD∪ i

ϕ . It also collects information about which
signals must be active so that the overwritten signals can be removed from
the analysis result; this information is gathered for the process i by an under-
approximation analysis of the active signals RD∩ i

ϕ .
The analysis of the local variables and present values of signals will be an

over-approximation. It is concerned with the entire program and thus collects
information for all processes at the same time.

Common analysis domains. The analyses use a labeling scheme, a block defini-
tion and a flow relation, similar to the ones described in [9], the only difference
being the wait statements which are given labels and treated as blocks. For each
process i in a program ‖i∈I i : process decli; begin ssi; end process i the
set of blocks is denoted blocks(ssi) and the flow relation is denoted flow(ssi).
Similarly we use init(ssi) to denote the label of the initial block when executing
the process i.

We define the cross flow relation cf for a program as the set of all possible
synchronizations, i.e. cf is the Cartesian product of the set of labels of wait
statements in each process.

The labeling scheme is defined so that each block has a label which is initially
unique for the program. During execution the labels might not be unique within
the processes, but the same label is not found in two different processes. Hence,
we shall sometimes implicitly use that to each label (l ∈ Lab) there is a unique
process identifier (i ∈ Id) in which it occurs.

88 T.K. Tolstrup, F. Nielson, and H.R. Nielson

The analyses are presented in a simplified way, following the tradition of
the literature (see [9]), where all programs considered are assumed to have so-
called isolated entries (meaning that the entry nodes cannot be reentered once
left). This is reasonable as each process in VHDL1 can be considered as a skip
statement followed by a loop with an always true condition around the statement
defining the process. We shall write FV (ss) for the set of free variables of the
statement ss and similarly FS(ss) for the set of free signals.

4.1 Analysis of Active Signals

The Reaching Definitions analysis takes the form of a Monotone Framework as
given in [9]. It is a forward Data Flow analysis, with both an over- (RD∪ i

ϕ)
and an under- (RD∩ i

ϕ) approximation part; it operates over a complete lattice
P(Sig� × Lab�) where Sig� is the set of signals and Lab� is the set of labels
present in the program.

In both cases we shall introduce functions recording the required information
at the entry and at the exit of the program points. So for the over-approximation
we have

RD∪ i
ϕentry, RD∪ i

ϕexit : Lab� → P(Sig� × Lab�)

and similarly for the under-approximation

RD∩ i
ϕentry, RD∩ i

ϕexit : Lab� → P(Sig� × Lab�)

To define the analysis we define in Table 4 a function

killiRDϕ : Blocks� → P(Sig� × Lab�)

which produces a set of pairs of signals and labels corresponding to the assign-
ments that are killed by the block. A signal assignment can be killed for two
reasons: Another block in the same process assigns a new value to the already
active signal, or a wait statement in the same process will synchronize all active
signals, and therefore kill all signal assignments.

In Table 4 we also define the function

geni
RDϕ : Blocks� → P(Sig� × Lab�)

that produces a set of pairs of signals and labels corresponding to the assignments
generated by the block.

The over-approximation part of the analysis is defined in terms of the in-
formation that may be available at the entry of the statement. Therefore the
over-approximation part considers a union of the information available at the
exit of all statements that have a flow directly to the statement considered.

The under-approximation part of the analysis is defined in terms of the in-
formation that must be available at the entry of the statement. Therefore the
under-approximation part considers an intersection of the information available
at the exit of all statements that have a flow directly to the statement considered.

The full details are presented in Table 4.

Information Flow Analysis for VHDL 89

Table 4. Reaching Definitions Analysis for active signals; labels l are implicitly as-
sumed to occur in process i : process decli; begin ssi; end process i

kill and gen functions for the process i : process decli; begin ssi; end process i

killiRDϕ([s <= e]l) = {(s, l′)|Bl′ assigns to s in process i}
killiRDϕ([wait on S until e]l) = {(s, l′)|Bl′ assigns to s in process i}

killiRDϕ([. . .]l) = ∅ otherwise

geni
RDϕ([s <= e]l) = {(s, l)}

geni
RDϕ([s(z1 downto z2) <= e]l) = {(s, l)}
geni

RDϕ([s(z1 to z2) <= e]l) = {(s, l)}
geni

RDϕ([. . .]l) = ∅ otherwise

data flow equations: RDϕ for the process i : process decli; begin ssi; end process i

RD∪ i
ϕentry(l) =

{
∅ if l = init(ssi)⋃
{RD∪ i

ϕexit(l
′)|(l′, l) ∈ flow(ssi)} otherwise

RD∪ i
ϕexit(l) = (RD∪ i

ϕentry(l)\killiRDϕ(Bl)) ∪ geni
RDϕ(Bl)

RD∩ i
ϕentry(l) =

{
∅ if l = init(ssi)⋂̇
{RD∩ i

ϕexit(l
′)|(l′, l) ∈ flow(ssi)} otherwise

RD∩ i
ϕexit(l) = (RD∩ i

ϕentry(l)\killiRDϕ(Bl)) ∪ geni
RDϕ(Bl)

For the under-approximation analysis we define a special intersection op-
erator;

⋂̇
∅ = ∅, and

⋂̇
X =

⋂
X for X
= ∅, to guarantee that RD∩ i

ϕentry ⊆
RD∪ i

ϕentry, will hold for the smallest solution to the equation systems.

4.2 Analysis of Local Variables and Present Values of Signals

The Reaching Definitions analysis for the local variables corresponds to the
Reaching Definitions analysis given in [9]. For the present value of signals it
will use the result of the Reaching Definitions analysis for active signals. The
idea is that if a signal has an active value when execution of the program arrives
at a synchronization point, then the active value of the signal will become the
present value of the signal after the synchronization.

The result of the Reaching Definitions analysis for active signals can be com-
puted before we perform the Reaching Definitions analysis for local variables
and signals. Hence the result can be considered a static set, and therefore the
Reaching Definitions analysis for local variables and signals remains an instance
of a Monotone Framework.

The Reaching Definitions analysis for present values of signals operates over
the complete lattice P(Sig� × Lab�) and is a forward data flow analysis. It
yields an over-approximation of the assignments that might have influenced
the present value of the signal. Its goal is to define two functions holding the
information at the entry and exit of a given label in the program:

90 T.K. Tolstrup, F. Nielson, and H.R. Nielson

Table 5. Reaching Definitions Analysis for the local variables and present value of sig-
nals, for all labels l in the program ‖i∈I i : process decli; begin ssi; end process i

kill and gen functions

killcf
RD([x := e]l) = {(x, ?)}∪

{(x, l′)|Bl′ assigns to x in process i}
killcf

RD([wait on S until e]l) =
⋂̇

(l1,...,ln)∈cf,s.t. li=l⋃n
j=1 fst(RD∩ i

ϕentry(lj)) × wS(ssi)

killcf
RD([. . .]l) = ∅ otherwise

gencf
RD([x := e]l) = {(x, l)}

gencf
RD([x(z1 downto z2) := e]l) = {(x, l)}
gencf

RD([x(z1 to z2) := e]l) = {(x, l)}
gencf

RD([wait on S until e]l) =
⋃

(l1,...,ln)∈cf,s.t. li=l⋃n
j=1 fst(RD∪ i

ϕentry(lj)) × {l}
gencf

RD([. . .]l) = ∅ otherwise

data flow equations: RD

RDcf
entry(l) =

{
{(x, ?) | x ∈ FV (ssi)} ∪ {(s, ?) | s ∈ FS(ssi)} if l = init(ssi)⋃
{RDcf

exit(l
′)|(l′, l) ∈ flow(ssi)} otherwise

where B and i is uniquely given by Bl ∈ blocks(ssi)

RDcf
exit(l) = RDcf

entry(l)\killcf
RD(Bl) ∪ gencf

RD(Bl)

RDcf
entry, RDcf

exit : Lab� → P((V ar� ∪ Sig�)× Lab�)

The Reaching Definitions analysis for local variables and signals is given in Table
5 and makes use of two auxiliary functions. One is

killcf
RD : Blocks� → P((V ar� ∪ Sig�)× Lab�)

that produces a set of pairs of variables or signals and labels corresponding to
assignments that are overwritten by the block. An assignment to a local variable
will overwrite all previous assignments on the execution path. A signal value can
only be overwritten by a wait statement where at least one of the synchronizing
processes has an active value for the signal. To guarantee that an active value for
a signal is available, the under-approximation analysis (RD∩ i

ϕ) described above
in Section 4.1 is used.

Since the active signal has to be present in all possible processes the consid-
ered wait statement could synchronize with, an intersection over the set cf of
cross flow information is needed.

The other auxiliary function is

gencf
RD : Blocks� → P((V ar� ∪ Sig�)× Lab�)

Information Flow Analysis for VHDL 91

that produces a set of pairs of variables or signals, and labels corresponding
to the assignments generated by the block. Only assignments to local variables
generate definitions of a variable. Only wait statements are capable of changing
a signal’s value at present time. This means that in our analysis signals will get
their present value at wait statements in the processes. The result of the over-
approximation analysis (RD∪ i

ϕ) contains all the signals that might be active and
thus defines the present value after the synchronization. Therefore we perform
a union over all the signals that might be active in any process, that might be
synchronized with.

Finally, all signals are considered to have an initial value in VHDL1 hence a
special label (?) is introduced to indicate that the initial value might be the one
defining a signal at present time. The operator fst is defined by fst(D) = {s |
(s, l) ∈ D} and extracts the first components of pairs.

5 Information Flow Analysis

The Information Flow analysis is performed in two steps. First we identify the
flow of information to a variable or signal locally at each assignment; this is
specified in Section 5.1. Then we perform a transitive closure of this information
guided by our Reaching Definitions analysis; this is described in Section 5.2
where we also compare the result of our method with that of Kemmerer [8].

The result of the Information Flow analysis is given in the form of a directed
graph. The graph has a node for each variable or signal used in the program,
and an edge from the node n1 to the node n2 if information might flow from n1

to n2 in the program. This graph will in general be non-transitive. To illustrate
this point consider the following programs:

(a): [c := b]1; [b := a]2 (b) : [b := a]1; [c := b]2

In program (a) there is a flow from b to c and a flow from a to b and therefore
the resulting graph shown in Figure 3(a) has an edge from node b to node c and
an edge from node a to node b. There is no flow from a to c and indeed there is
no edge from a to c. In program (b) on the other hand there is a flow from a to
c and the resulting graph shown in Figure 3(b) indeed has an edge from a to c.

5.1 Local Dependencies

It is clear that an assignment of a variable to another variable will cause a flow of
information. As an example, a := b causes a flow of information from b to a. We
also need to consider implicit flows due to conditional statements. As an example,
if c then a := b else null has an implicit flow from c to a because an observer
could use the resulting value of a to gain information about the value of c.

In this fashion we must consider all the statements of VHDL1 and determine
how information might flow. For a VHDL1 program we define a set of structural
rules that define the set of dependencies between local variables and signals. The
analysis is defined using judgments of the form

B (ss : RM

92 T.K. Tolstrup, F. Nielson, and H.R. Nielson

(b) c

b

a

(a)

a

c

b

Fig. 3. Result of the Information Flow Analysis for programs (a) and (b)

where B ⊆ (Var∪Sig), ss ∈ Stmt and RM ⊆ ((Var∪Sig)×Lab×{M0, M1, R0,
R1}). Here ss is the statement analyzed under the assumption that it is only
reachable when values of variables and signals in B have certain values. The
result is the set RM containing entries (n, l, Mj) if the variable or signal n
might be modified at label l in ss; we use M0 for variables and present values
of signals and M1 for active values of signals. Similarly, RM contains entries
(n, l, Rj) if the variable or signal n might be read at label l in ss; we use R0 for
variables and present values of signals and R1 for the synchronization of active
values of signals.

The local dependency analysis of the flow between variables and signals is
specified in Table 6 and is explained below. Assignments to variables result in
local dependencies, there are no other statements that causes information to flow
into variables.

For the active signals in a program it holds that information can only flow
to the signal through signal assignment. Hence only the signal assignment con-
tributes dependencies to the resulting set. Notice that the information flowing to
active signals (M1) might come from both local variables and the present value
of signals, but never from the active value of signals.

The variables and signals used in the evaluation of conditions within if and
while statements are collected in the block-set B as they might implicitly flow
into assigned variables or signals in the branches. This is taken care of in rules
[Conditional] and [Loop]. Notice that these rules do not handle termination
or timing channels that might occur.

The synchronization statements (i.e. wait) cause information about the ac-
tive signals to flow to the present value of the same signals. Hence we will update
(writing R1) all signals present in the process considered.

5.2 Global Dependencies

Using the local dependencies defined above we can construct a Resource Matrix
specifying for each point in the program which resources (i.e. a variable or signal)
was modified and which resources were read meanwhile [8]. First we apply the
local dependency analysis on each process in the considered program the result
is collected in RMlo =

⋃
i RMi where ∅ (ssi : RMi. Then we need to compute

the global dependencies; one way to do this is to take the transitive closure of

Information Flow Analysis for VHDL 93

Table 6. Structural rules for constructing a Resource Matrix for the process i :
process decli begin ssi; end process i

[Local Variable Assignment] :

B � [x := e]l : {(x, l, M0)} ∪ {(n, l, R0) | n ∈ FV (e) ∪ FS(e) ∪ B}

B � [x(z1 downto z2) := e]l :
{(x, l, M0)} ∪ {(n, l, R0) | n ∈ FV (e) ∪ FS(e) ∪ B}

B � [x(z1 to z2) := e]l :
{(x, l, M0)} ∪ {(n, l, R0) | n ∈ FV (e) ∪ FS(e) ∪ B}

[Signal Assignment] :

B � [s <= e]l : {(s, l, M1)} ∪ {(n, l, R0) | n ∈ FV (e) ∪ FS(e) ∪ B}

B � [s(z1 downto z2) <= e]l :
{(s, l, M1)} ∪ {(n, l, R0) | n ∈ FV (e) ∪ FS(e) ∪ B}

B � [s(z1 to z2) <= e]l :
{(s, l, M1)} ∪ {(n, l, R0) | n ∈ FV (e) ∪ FS(e) ∪ B}

[Skip] :
B � [null]l : ∅

[Composition] :
B � ss1 : RM1 B � ss2 : RM2

B � ss1; ss2 : RM1 ∪ RM2

[Conditional] :
B′ � ss1 : RM1 B′ � ss2 : RM2

B � if [e]l then ss1 else ss2 : RM1 ∪ RM2

where B′ = B ∪ FV (e) ∪ FS(e)

[Loop] :
B′ � ss : RM

B � while [e]l do ss : RM

where B′ = B ∪ FV (e) ∪ FS(e)

[Synchronization] :

B � [wait on S until e]l : {(s, l, R1) | s ∈ FS(ssi)}∪
{(n, l, R0) | n ∈ B ∪ S ∪ FV (e) ∪ FS(e)}
where ssi is the body of process i in which l resides

the local dependencies; this method is attributed to Kemmerer and is described
in [8] in case of traditional programming languages.

Let us evaluate the traditional method for constructing the Resource Matrix.
For this we consider the program (a) defined above. The result of the transitive
closure will correspond to the graph presented in Figure 3(b), but not to the
true behavior of the program as depicted in the graph in Figure 3(a). This is
due to the flow-insensitivity of the transitive closure method: The imprecision
is a result of the method failing to consider information about the flow between
labels in the programs.

94 T.K. Tolstrup, F. Nielson, and H.R. Nielson

Table 7. Specialization of RD∪ i
ϕentry and RDcf

entry

[RD for active signals]
(s, li, R1) ∈ RMlo (s, l) ∈ RD∪ i

ϕentry(li)

(s, l) ∈ RD†
ϕ(li)

if ∃−→l ∈ cf : li occurs in
−→
l

[RD for present signals and local variables]

(n, l′, R0) ∈ RMlo (n, l) ∈ RDcf
entry(l′)

(n, l) ∈ RD†(l′)

Table 8. Transitive closure of Resource Matrix, based on RD† and RD†
ϕ

[Initialization]
(n, l, A) ∈ RMlo

(n, l, A) ∈ RMgl
where A ∈ {R0, R1, M0, M1}

[Present values and local variables]

(n′, l′) ∈ RD†(l) (n, l′, R0) ∈ RMgl

(n, l, R0) ∈ RMgl

[Synchronized values]

(s′, li) ∈ RD†(l) (s′, l′′) ∈ RD†
ϕ(lj) (s, l′′, R0) ∈ RMgl

(s, l, R0) ∈ RMgl

if ∃−→l ∈ cf : li and lj occur in
−→
l

Closure based on Reaching Definitions. This motivates modifying the closure
condition to make use of Reaching Definitions information. Indeed the Reaching
Definitions analysis specified in Section 4 supplies us with the needed information
to exclude some of the “spurious flows” when performing the transitive closure.

Before doing so we specialize in Table 7 the result of the Reaching Definitions
analysis to allow a better precision in the closure of the Resource Matrix. The
specialization ensures that definitions are only considered to reach a labeled
construct if they are actually used in the labeled construct. This is done by
considering the result of the local dependency analysis; notice the usage of the
cross flow relation in rule [RD for active signals] which determines if the
signal might in fact be synchronized.

We can now update the specification of the transitive closure using the result
of the Reaching Definitions analysis, as is done in Table 8. We specify a rule for
initializing the Global Resource Matrix [Initialization].

The closure is done by rule [Present values and local variables] consid-
ering the result of the Reaching Definitions analyses for the program. For the
present value of a signal and for local variables we consider each entry in the Re-
source Matrix, if the present value of a variable or signal is read (R0) we can use
the information of the Reaching Definitions analysis to find the label where the
variable or signal was defined. Therefore we copy all the entries about variables
and signals read at this label in the Resource Matrix. This rule also handles the

Information Flow Analysis for VHDL 95

c◦

c•
c

a

c

b b
a

(b)

a◦

a• b◦

b•

(a)

Fig. 4. Result of the Information Flow Analysis for program (b)

case where information flows from the variables and signals in a condition on a
synchronization point.

The rule [Synchronized values] uses the result of the Reaching Definitions
analysis to determine which signals were read in the Resource Matrix and follow
them to their definition. When synchronizing signals the matter is complicated
as the signal is defined at a synchronization point, therefore the rule needs to
consider all the information about signals flowing into the synchronization points
that might be synchronized with. Which synchronization points the definition
point synchronizes with is gathered in the cf predicate, hence we apply the
Reaching Definitions analysis for active signals on all the synchronization points
and copy all the entries indicating variables and signals being read from the
point the signal could be defined.

5.3 Improvement of the Information Flow Analysis

For the example program (b) (i.e. [b := a]1; [c := b]2) we previously described
how the Information Flow Analysis would yield the result presented in Figure
4(a). In fact the resulting graph indicates that the resulting value of the variable
b can be read from the resulting value of the variable c, which is entirely correct.
However, the initial value of the variable b cannot be read from the variable c; to
see this consider a scenario where b initially contained a value, this value would
never flow to c, as the first assignment would overwrite the variable.

The Information Flow Analysis based on the Reaching Definitions Analysis
can be improved to handle the initial and outgoing values of signals with greater
accuracy. The idea is to add a node to the graph for each incoming signal,
annotating the incoming node of a variable with a ◦, and for each outgoing
signal, annotating the outgoing node with a •. Using this scheme a more precise
result for program (b) can be constructed as shown in Figure 4(b), where we
consider the last statement to be outcoming and therefore update the Resource
Matrix in the same fashion as for wait statements.

The extension of the analysis is based on adding special variables and signals
for incoming and outgoing values. The rules for improving the information flow
analysis are presented in Table 9 and explained below.

In a traditional sequential programming language the improvement could be
handled by adding assignments of the form x := x◦ for each variable read in
front of the program, and similarly adding assignments x• := x in the end for

96 T.K. Tolstrup, F. Nielson, and H.R. Nielson

Table 9. Rules for the improved Information Flow Analysis

[Initial values]

(n, ?) ∈ RD†(l)
(n◦, l, R0) ∈ RMgl

[Incoming values]

(n, l′) ∈ RD†(l) l′ ∈ WS

(n◦, l, R0) ∈ RMgl

[Outgoing values]
n ∈ Sigout

(n•, ln• , M1) ∈ RMgl

[Outcoming values]

l ∈ WS (n, l′) ∈ RD†
ϕ(l) (n′, l′, R0) ∈ RMgl

(n′, ln• , R0) ∈ RMgl

handling the outgoing values. Having this in mind we introduce the rule [Initial
values] that uses the special symbol (?) from the Reaching Definitions analysis
to propagate the initial value of a variable or locally defined signal.

VHDL1 consists of processes running as infinite loops in parallel with other
processes and under the influence of the environment. Therefore signals might
carry incoming values at any synchronization point, similarly a process might
communicate values out of the system at any synchronization point. We intro-
duce a new process π to illustrate how the incoming and outgoing signals are
handled. The process has the form

π : process begin [sin
1 <= s◦1]; . . . [wait on Sπ]; [s•1 <= sout

1]ls•1 ; . . .
end process π

where sin
1 , sin

2 , . . . are the incoming signals, sout
1 , sout

2 , . . . are the outgoing signals
and Sπ is the set of all incoming and outgoing signals, as specified in the entity
declaration of the program.

The assignments prior to the synchronization point in process π can be syn-
chronized into the system at each wait statement and this is handled by rule
[Incoming values] where WS =

⋃
i WS(ssi) are all the wait statements in the

program.
We add two rules for the outgoing values to the closure method. The first

rule [Outgoing values] specifies a special label for each signal (i.e. the label of
the assignment to n• in process π) used on the left-hand side in an assignment,
at which the signal is set to be modified in the Resource Matrix. The second rule
[Outcoming values] handles the right-hand side of the outgoing assignments
in process π by considering all active signals coming into a wait statement,
the values read when these active signals where modified are the signals that
influence the outgoing value. Sigout is the set of signals that are declared as
outgoing (i.e. with the keyword out in the entity declaration).

6 Results

In order to compare our work to Kemmerer’s method we shall consider part of the
NSA Advanced Encryption Standard test implementation of the 128 bit version
of the encryption algorithm [17]. Both the presented analyses and Kemmerer’s
method have been implemented using the Succinct Solver.

Information Flow Analysis for VHDL 97

(a)

a_1_1

a_3_2

a_1_2

a_1_3

a_1_0

a_2_2

a_2_3

a_2_0

a_2_1

a_3_3

a_3_0

a_3_1

(b)

a_3_1

a_3_2

a_3_3

a_3_0

a_2_3

a_2_1

a_2_2

a_2_0

a_1_1

a_1_0

a_1_3

a_1_2

Fig. 5. Resulting graphs of Kemmerer’s method (a) and our analysis (b) on a shift
function

The analysed programs use several temporary variables. These variables are
overwritten and reused for each input state. The graphs computed by Kem-
merer’s method indicate the problem of the method not taking control flow
information into account; many edges are false positives resulting from the over
approximation. Our analysis correctly eliminates the edges introduced by the
overwritten variables.

To illustrate the difference between the two approaches, we consider the
function shifting rows in a block. The first row is not altered by the function,
while the last three rows are shifted 1, 2 and 3 positions respectively. The values
flow through temporary variables, which are used for all three rows. The function
is preprocessed by unrolling the loops and replacing constants with their values.

The resulting graphs are simplified so that only the nodes for the three shifted
rows are presented. Furthermore we have merged incoming and outgoing nodes
in the graph of our analysis. Therefore both of the resulting graphs for the three
shifted rows have 12 nodes, and are now comparable. Kemmerer’s method is
unable to separate the shifts on each row as shown in Figure 5(a). Our analysis
computes the precise result as shown in Figure 5(b).

7 Conclusion

One main achievement of the paper is the adaptation of the classical notion of
Reaching Definitions analysis from traditional programming languages to real-
time languages in the context of hardware description languages. We performed
a development for a useful fragment of VHDL and correctly deal with the com-
plications due to active and present values of signals. One unusual ingredient is
the under-approximation analysis for active signals in order to be able to specify
non-trivial kill-components for present values.

The other main achievement is the demonstration of the usefulness of the
Reaching Definitions analysis for developing an Information Flow analysis that
is more precise than the traditional method of Kemmerer. The local depen-
dencies were specified by a straightforward inference system in the manner of
information flow analyses. The global dependencies made good use of all aspects
of the Reaching Definitions analysis.

98 T.K. Tolstrup, F. Nielson, and H.R. Nielson

Furthermore the improved information flow analysis correctly analyses pro-
grams that would incorrectly be rejected by typical security-type systems; as it
is described in the Open Challenge F of [15]. This is due to the fact that the
Reaching Definitions analysis allows us to kill overwritten variables and signals.

The current implementation directly follows the structure of the specifica-
tions given in the previous sections and one can argue that its worst case com-
plexity is O(n5). So far this has posed no problems, however we conjecture that
the implementation can be improved to have a cubic worst case complexity.
The reason is that the analysis basically is a combination of three bit-vector
frameworks (each being linear time in practice) [9] and a cubic time reachability
analysis [1].

References

1. A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-
Wesley, 1983.

2. P. J. Ashenden. The Designer’s Guide To VHDL. Morgan Kaufmann, 2nd edition,
2002.

3. K. G. W. Goossens. Reasoning About VHDL Using Operational and Observational
Semantics. In CHDM, volume 987 of LNCS, pages 311–327. Springer, 1995.

4. J. T. Haigh and W. D. Young. Extending the Non-Interference Version of MLS
for SAT. In IEEE Symposium on Security and Privacy, pages 232–239, 1986.

5. Y-W. Hsieh and S. P. Levitan. Control/Data-Flow Analysis for VHDL Semantic
Extraction. Journal of Information Science and Engineering, 14(3):547–565, 1998.

6. C. Hymans. Checking Safety Properties of Behavioral VHDL Descriptions by
Abstract Interpretation. In SAS, volume 2477 of LNCS, pages 444–460. Springer,
2002.

7. IEEE inc. IEEE Standard VHDL Language Reference Manual. IEEE, 1988.
8. J. McHugh. Covert Channel Analysis. Handbook for the Computer Security Cer-

tification of Trusted Systems, 1995.
9. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,

1999.
10. F. Nielson, H. R. Nielson, and H. Seidl. A Succinct Solver for ALFP. Nordic

Journal of Computing, 9(4):335–372, 2002.
11. F. Nielson, H. R. Nielson, H. Sun, M. Buchholtz, R. R. Hansen, H. Pilegaard, and

H. Seidl. The Succinct Solver Suite. In TACAS, volume 2988 of LNCS, pages
251–265. Springer, 2004.

12. H. R. Nielson and F. Nielson. Semantics with Applications - A Formal Introduction.
John Wiley & Sons, 1992.

13. International Standards Organisation. Common Criteria for information technol-
ogy security (CC). ISO/IS 15408 Final Committee Draft, version 2.0., 1998.

14. J. Rushby. Noninterference, Transitivity, and Channel-Control Security Policies.
Technical Report CSL-92-02, SRI International, December 1992.

15. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

16. K. Thirunarayan and R. L. Ewing. Structural Operational Semantics for a Portable
Subset of Behavioral VHDL-93. FMSD, 18(1):69–88, 2001.

17. B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke. Hardware performance sim-
ulations of round 2 advanced encryption standard algorithms. Technical report,
National Security Agency, 2000.

Composing Fine-Grained Parallel Algorithms for

Spatial Dynamics Simulation�

Olga Bandman

Supercomputer Software Department,
ICMMG, Siberian Branch Russian Academy of Sciences,

Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
bandman@ssd.sscc.ru

Abstract. A class of fine-grained (FG) parallel models and algorithms
is defined as a generalization of Cellular Automata (CA). It comprises
all CA-modifications, in which two main CA-properties (locality and
parallelism of intercell interaction) are preserved, no constraint being
imposed on state alphabets and transition functions. A set of methods
for composing a complex FG-algorithm out of a number of simple ones is
proposed. To make compatible FG-algorithms with different alphabets,
a number of algebraic operations on cellular arrays are introduced. The
set of proposed composition methods has a two-level structure: the lower
level comprises composition of cell transition functions, while the higher
level deals with global operators on cellular arrays. For each type of
proposed methods an example is given and the domain of application is
determined.

1 Introduction

The problem of finding a proper mathematical model for simulation spatial dy-
namics of a complex phenomenon, which is given by some kind of qualitative or
quantitative description, is sometimes extremely hard. The simulation is usually
associated with a natural process investigation and requires large space-time di-
mensions, as well as the necessity of observing the process evolution in detail.
The above requirements determine the main features of the models to be used.
First, due to their complexity it should be easy to allocate the program on a
number of processors to run it in parallel. Second, the computation should al-
low to construct a visual pattern at any time of the program run. To afford the
above properties the simulation models have to rely upon two main principles: 1)
inherent spatial parallelism, and 2) locality of state transition functions. Nowa-
days these principles characterize a number of spatial dynamics models. All of
them take origin from the classical Cellular Automaton by von-Neumann, being
its modification or generalization, having extended state alphabet (integer, real,
symbolic), and/or arbitrary state transition functions (logical, arithmetic, de-
terministic, probabilistic). Moreover, different modes of operation (synchronous,
� Supported by Presidium of Russian Academy of Sciences, Basic Research Program

N 17-6 (2004).

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 99–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 O. Bandman

n-step synchronous, asynchronous) are also studied. Being allocated according
to the degree of discreteness, the set of FG parallel models represents a sequence
with Boolean CA on one border, and the so called ”continuous CA” – on the
other border. The latter comprises the explicit form of PDE discretization, and
may be considered as a representative of differential mathematics in a FG-models
community.

By that time a large amount of FG–models of simple natural processes are
proposed and well studied. The most known and practically used are CA models
of diffusion [1], Gas-Lattice [2], phase-separation, pattern formation [3], chemi-
cal reactions [4], etc. Unfortunately, there is no formal procedure to construct a
new fine-grained model according to a given qualitative or quantitative specifica-
tion of the phenomenon to be simulated. It may be done either by experimental
trial-and-error method or by combining simple models to represent the more
complicated ones. The first way is rather heuristic and requires both good ex-
perience in CA modeling and sophisticated understanding of the phenomenon
itself. The second way may be formalized but needs to accumulate case studies
of simple models and develop a set of algebraic operations on them. The latter is
a hard problem born of used alphabets (data types) differentiation, which do not
allow to obey usual arithmetical rules. So, new operations on FG-algorithms are
needed to express the results of several interacting processes, whose known mod-
els are of different type. For example, in reaction-diffusion and prey-predatory
processes, diffusion may be given as a CA, and reaction – as a real function.
Snow-flakes formation may be modeled by a Boolean CA, while if it happens
in active medium, a chemical component should be added. So, to develop com-
position methods in FG domain the models belonging to it should be made
compatible to allow mathematical operations on them. Some particular cases
of composing Boolean CA with real spatial functions have been introduced in
[5,6] for combining diffusion and reaction components. Moreover, some attempts
to create a theoretical foundation for composition is presented in [7]. The main
purpose of this article is to fill the gap and to present composition methods of
FG-algorithms in a generalized and systematic form. To capture all features of
the great diversity of FG-models the more general formalism for FG-algorithms
representation, namely, Parallel Substitution Algorithm [8], is chosen as a math-
ematical tool.

Apart from the Introduction and the Conclusion the paper contains four
sections. The second section contains definitions of the used concepts. In the
third section algebraic operations on cellular arrays are proposed and analyzed.
The fourth and the fifth sections are dedicated to composition methods on local
and global FG-operators, respectively. All methods are illustrated by examples.

2 Formal Statement of the Problem

2.1 Main Concepts and Definitions

Fine-grained algorithms are intended for processing spatially distributed func-
tions, represented by cellular arrays Ω = {(u, m) : u ∈ A, m ∈ M}, which

Composing Fine-Grained Parallel Algorithms 101

are finite sets of pairs (u, m) called cells, u being a cell state variable from the
domain A, referred to as alphabet, m - a cell name from a discrete naming
set M . No constraint is imposed on A, which is allowed to be Boolean vec-
tors AB = {(v1 . . . , vn) : vk ∈ {0, 1}}, real numbers from the closed interval
AR = [0, 1], and a set of symbols AS = A, B, C, ..., K. When any of above al-
phabets is implied the symbol u is used as a state variable. When the precise
indication of the state variable domain is essential, v is used for the Boolean
and z for the real ones. To indicate the state variable of a cell named m both
notations u(m) and um are used.

In the general case the naming set M may be of any kind, but further integer
vector set, representing coordinates of a Cartesian space of finite size is used. For
example, in the 2D case M = {(i, j) : i, j = 0, 1, . . . , N}. A notion m instead of
(i, j) is used for simplify general expressions and to indicate, that they are valid
for any other kind of a naming set. A set of all cellular arrays having identical
naming sets form a cellular array class denoted as ΩM .

A mapping φ : M → M , called a naming function is defined on M . It
determines for any m a neighbor φ(m) with whom a cell is allowed to interact.
For the set M = {(i, j)} naming functions are usually given in the form of
shifts φk = (i + a, j + b), a, b being integers not exceeding a fixed r, called a
radius of neighborhood. By condition, φ0(m) = m. The neighborhood of a cell is
determined by a template as a set of naming functions

T (m) = {m, φ1(m), . . . , φn(m)}, (1)

which associates to each name m ∈ M a number of cell names, thereby deter-
mining the cell neighborhood, which is a subset of cells

S(m) = {(u0, m), (u1, φ1(m)), . . . , (un, φn(m))}, (2)

which is called a local configuration, and T (m) being its underlying template. The
set U(m) = {u0, u1, . . . , un} forms a set of local confugaration state variables.

A cell (um(t), m) changes its state to the next one um(t + 1), m when a local
operator is applied to it, which is expressed in the form of a substitution [8] as
follows

Φ(m) : S(m)→ S′(m), (3)

where S(m) is called a base, and S′(m) – a next state of the substitution.
The underlying templates of S(m) and S′(m) are in the following relation.
T ′(m) ⊆ T (m), which means that some cells may remain unchanged by the
substitution application. These cells form a context of the substitution Φ(m)
with the underlying template T ′′(m) = T (m) \ T ′(m).

The cell states in S′(m) are the results of a cell transition function,

um(t + 1) = f(u0, u1, . . . , un), uj ∈ U(m). (4)

where U(m) is a state variables set of S(m).

102 O. Bandman

A global operator Φ(Ω), which performs a transition from Ω(t) to Ω(t + 1) is
referred to as a parallel substitution [8]. An execution of a parallel substitution
is the application of (3) to all m ∈ M . There are two main modes of parallel
substitution application to a cellular array. The synchronous mode when all
cells compute their next states in parallel and transit to the next state at once
on time steps t = 0, 1, . . . , ..., changing the global cellular array state, and the
asynchronous mode when the cells execute the transitions at random or in a
certain order. In all cases a computation of Φ(Ω(t)) = Ω(t + 1) is considered as
an iteration. The sequence Ω(0), Ω(1), . . . , Ω(t), . . . , Ω(T) obtained by iterative
application of a global operator to the initial array Ω(0), is called the evolution.
The time T undicates the terminal step.

With the above notions an FG-algorithm Θ is defined as a global operator
Φ(Ω) which may be applied to any cellular array from a class ΩM , i.e.

Θ = (ΩM , Φ(Ω))

together with the indication of the operation mode. When Φ(Ω) is a single
parallel substitution of the form (3) Θ is considered to be an elementary FG-
algorithm.

2.2 Operations on Cellular Arrays

In any class of cellular arrays ΩM some algebraic operations are defined bellow
to be used as tools in FG-composition methods. Like in any algebraic system
unary and binary operations are recognized.

Unary operations are represented by parallel substitutions, which are consid-
ered to be universal operators due to their great expressive power. In fact, any
mapping ΩM → ΩM may be represented in terms of parallel substitutions [8].
Nevertheless, two particular unary operators: averaging and Boolean discretiza-
tion, are to be distinguished, because they serve as transformers of Boolean
arrays into the equivalent real ones and vice versa.

Averaging of the Boolean cellular array Av(ΩB) is a substitution of the form

ΦAv(m) : Av(m) → {(z, m)}, (5)

applied to all cells m ∈M .

Av(m) = {(v0, ψ0(m)), (v1, ψ1(m)), . . . , (vq , ψq(m))}, (6)

is a base of ΦAv(m), the next state local configuration is a single cell, whose
state is computed according to the following local transition function

z =
1
q

q∑
k=0

vk, vk ∈ {0, 1}, z ∈ [0, 1]. (7)

Boolean discretization of a real cellular array Disc(ΩR) is a single-cell sub-
stitution of the form

ΦDisc(m) : {(z, m)} → {(v, m)}, where v =
{

1, if u < rand,
0 otherwise (8)

Composing Fine-Grained Parallel Algorithms 103

applied to all m ∈ M . In (8) and further rand is a real random number in the
interval [0,1].

The above two transformations are in the following relationship.

Disc(ΩB) = ΩB ,
Av(ΩR) = ΩR,

Disc(Av(ΩB)) = ΩB ,
Av(Disc(ΩR)) = ΩR.

(9)

Binary operators on a class of cellular arrays are defined on the basis of the
requirement that ordinary arithmetical rules be valid for their averaged forms,
i.e.

Ω1)Ω2 ⇔ Av(Ω1))Av(Ω2),
u1(m)) u2(m) ⇔ 〈u1(m)〉) 〈u1(m)〉 ∀m ∈ M,

(10)

where) stands for the cellular array operations: addition ⊕, subtraction +
or multiplication ⊗, and) stands for arithmetical +,−,×, respectively. Angle
brackets denote averaged state values.

The reason of taking averaged state values as a generalized alphabet is
twofold: 1) to allow ordinary arithmetic to be used for modeling spatial functions
interactions, and 2) to make the results more comprehensive from physical point
of view. The underlying template of the averaging area is chosen at the stage of
simulation problem discretization according to accuracy requirement [9].

From (10) it follows that when all operands have real alphabets, the cellular
array arithmetic coincides with the corresponding real cell-by-cell arithmetical
rules. But when one or both operands have Boolean alphabet, cell-by-cell oper-
ations are not valid. So, if Ω1 has Boolean alphabet, Ω2 has a real one, and a
Boolean arrays Ω3 = Ω1 ⊕ Ω2 is wanted, the single cell local operator with the
following transition function should be used [10].

v3(m) =

{
1 if v1(m) = 0 & rand < z2(m)

(1−〈v1(m)〉) ,

v1(m) otherwise.
. (11)

When Ω3 = Ω1+Ω2 is to be obtained a transition function should be as follows
[10]

v3(m) =

{
0 if v1(m) = 1 & rand < z2(m)

〈v1(m)〉
v1(m) otherwise.

. (12)

Since addition and subtraction are defined on cellular arrays with the alpha-
bet restricted by the interval [0,1], the condition 0 ≤ u ≤ 1 should be satisfied for
all cells (u, m) in the resulting cellular array. If it is not so, the alphabet is to be
renormalized. When both operands are Boolean and Boolean result is wanted,
the values z2 in (11) and (12) should be replaced by 〈v2〉. The above operations
on cellular arrays form a set of tools for constructing complex FG-algorithms of
a number of simple ones.

104 O. Bandman

The set of FG-algorithms composition methods has two levels of hierarchy.
The lower level (local composition) contains methods which aim to construct a
composed local operator from a number of elementary substitutions. The higher
level methods (global composition) aim to obtain a composed global operator
from a number of parallel substitutions.

3 Local Composition Methods

A local composition operator λ(Φ1(m), . . . , Φl(m)) represents the common func-
tioning of several simple local operators. Being applied to a cell (u, m) it results
in its next state u(t + 1). There are two forms of local composition: sequential
and parallel.

3.1 Sequential Local Composition

The local composition λs(Φ1(m), . . . , Φl(m)) is said to be sequential, when l
sequential substeps are needed to obtain the next state um(t + 1).

The operation used for local sequential composition is a local superposition,
i.e. application of a substitution Φk(m) to the result of Φ(k−1)(m), so that the
result is a single local operator of the following form.

Φ(m) = Φl(Φl−1(. . . (Φ1(m)))), (13)

When the transition functions fk(Uk) and fg(Ug) of the form (4) in the compo-
nent substitutions Φk and Φg, k, g = 1, . . . , l, have different complexities, the
sequential substep times τk(m) and τg(m), may be different, i.e. τk(m)
= τg(m).
So, the time step needed for a cell to transit to the next iteration is as follows.

τ(m) =
l∑

k=1

τk(m), (14)

In case when all τk(m) are identical, τ(m) = lτ(m). Obviously, the time step for
the global transition should be taken not less than the maximal τ(m) over all
m ∈M .

In the general case local superposition is neither commutative nor associative,
i.e. if Φ1
= Φ2
= Φ3, then

Φ1(Φ2(m))
= Φ2(Φ1(m)),
Φ3(Φ2(Φ1(m))
= (Φ3(Φ2))(Φ1(m)). (15)

The above two properties are very important, because the results of the simu-
lation may differ essentially if the order of superpositions is changed. Although
in case of long evolution, the repetitive sequence of superpositions, for example,
such as Φ1(Φ2(Φ1(Φ2(m) . . .))), makes the composition insensitive of the sub-
stitution being the first. If it is not the case, the only way to make the result

Composing Fine-Grained Parallel Algorithms 105

independent of the order of substitutions in the composition is their random
choice at any step of application (the Monte-Carlo method).

Example 1. A chemical reaction of CO oxidation over platinum metals, studied
by means of a number of kinetic and continuous models [4,11], is represented by
a local superposition of elementary substitutions as follows. The cellular array
Ω(A, M) corresponds to a metallic plate, each site on it being named by (i, j) ∈
M, |M | = N × N . The alphabet contains three symbols A = {a, b, 0}, so that
(a, (i, j)), (b, (i, j), and (0, (i, j)) are cells corresponding to the sites occupied by
the molecules of CO, O or being empty, respectively. In the initial array all
cells are empty. The reaction mechanism consists of the following elementary
molecular actions in any cell named (i, j).

1) Adsorption of CO from the gas: if the cell (i, j) is empty, it becomes
occupied by a CO molecule with probability pa.

2) Adsorption of O2 from the gas: if the cell (i, j) is empty and has an empty
neighbor, both become occupied by a molecule of oxygen with probability pb.
One of the four neighbors of the cell (i, j) is chosen with probability pn = 0.25.

3) Reaction of oxidation of CO (CO+0 → CO2): if the cell (i, j) occurs to
be in a CO state and its neighbor in O state, then the molecule CO2, formed by
the reaction, transits to the gas and both cells become empty. The neighbor to
be tested for the cell (i, j) is chosen with probability pn = 0.25.

4) Reaction of oxidation of CO (O+CO → CO2), which is the same than in
3) but the cell (i, j) is in a state O and its neighbor is in the state CO.

The above chemical process is expressed in terms of a local superposition
Φ(i, j) =Φ4(Φ3(Φ2(Φ1(i, j)))) of the following substitutions:

Φ1(i, j) : {(0, (i, j))} → {(a, (i, j))}, if pa > rand,
Φ2(i, j) : {(0, (i, j))(0, φk(i, j))} → {(b, (i, j)), (b, (φk(i, j))},

if ((k − 1)pn < rand < kpn) & pb > rand)
Φ3(i, j) : {(a, (i, j))(b, φk(i, j))} → {(0, (i, j)), (0, (φk(i, j))},

if ((k − 1)pn < rand < kpn))
Φ4(i, j) : {(b, (i, j))(a, φk(i, j))} → {(0, (i, j)), (0, (φk(i, j))},

if ((k − 1)pn < rand < kpn))

(16)

In (16), each substitution Φl(i, j) (l=1,2,3,4) represents a molecular action
mentioned in lth point in the above description of of the process. In Φ2, Φ3,
and Φ4, the naming function φk(i, j), k ∈ {1, 2, 3, 4}, indicates to one of the
four neighbors of the cell (i, j), namely φ1(i, j) = (i, j + 1), φ2(i, j) = (i +
1, j), φ3(i, j) = (i, j − 1), φ4(i, j) = (i− 1, j).

Following [4], where Monte-Carlo simulation method is applied, i,e, asyn-
chronous mode of simulation is chosen, the composed local operator Φ(i, j)
should be applied N×N times to randomly chosen cells of Ω to obtain Ω(t+1).

In fig.1 three snapshots of the simulation process are shown, the initial cellular
array Ω(0) = {(0, (i, j)) : ∀(i, j) ∈ M}, |M | = 200× 200 with periodic boudary
conditions.

106 O. Bandman

Fig. 1. Three snapshots of the simulation process given as a sequential local composi-
tion of the substitutions (16) with |M | = 200 × 200. Black pixels stand for CO, gray
pixels – for 0, and white pixels – for empty sites

3.2 Parallel Local Composition

A local composition λp(Φ1(m), . . . , , Φl(m)) is called parallel, when all l compo-
nent substitutions are executed in parallel, i.e. simultaneously or independently.

When the substitutions to be composed are completely independent, that is

Tk(m) ∩ Tg(m) = ∅ ∀g, k,∈ {1, . . . , l},

parallel local composition is referred to as trivial.
When it is not the case, the set of substitutions should meet the condition of

noncontradictoriness [8]. Necessary and sufficient conditions for two substitutions
Φk and Φg to be noncontradictory are as follows. If there exists m ∈ T ′

k(m) ∩
T ′

g(m), with T ′
k(m) and T ′

g(m) being the underlying templates for S′
k(m) and

S′
g(m), respectively, then

(uk, m) ∈ S′
k(m)&(ug, m) ∈ S′

g(m) ⇒ uk = ug.

In other words, no cell with the same name may occur in different states at
the same time-step. Some methods for providing a parallel substitution set to
be noncontradictory are given in [8]. All of them require a great amount of
computation. So, it seems reasonable to use the most simple sufficient noncon-
tradictoriness condition. In terms of the next state local configurations it is as
follows.

T ′
k(m) ∩ T ′

g(m) = ∅,
S′

k(m) ∩ S′
g(m) = ∅, ∀k, g ∈ {1, . . . , l}. (17)

On the other hand, to operate in common, component substitution transition
function should use common variables, i.e. each cell next state is the function
of the state values of cells in local configurations of all substitutions under the
composition.

uk(t + 1) = fk(U1(m) ∪ U2(m) ∪ . . . ∪ Ul(m)) ∀k = 1, . . . , l,

Composing Fine-Grained Parallel Algorithms 107

where Uk(m), k ∈ {1, . . . , l} is a set of local configuration state variables from
Sk(m). Hence, the bases of the component substitutions as well as their under-
lying templates, should have nonempty intersections.

Sk(m) ∩ Sg(m)
= ∅,
Tk(m) ∩ Tg(m)
= ∅ ∀k, g ∈ {1, . . . , l}, (18)

Combining (17) and (18) the condition for nontrivial local parallel substitution
is formulated as follows. The component substitutions may have nonempty in-
tersections only by their context parts.

T ′
k(m) ∩ T ′

g(m) = ∅
T ′′

k (m) ∩ T ′′
g (m)
= ∅ ∀k, g ∈ {1, . . . , l}, (19)

From the above it follows, that, as distinct from a sequential case, a parallel
local composition is represented by a set of substitutions, i.e.

λ(Φ1(m), . . . , Φl(m)) = {Φ1(m), . . . , Φl(m)},

such that for any Φk : Sk(m) → S′
k(m), k = 1, . . . , l, the following holds.

S′
k(m) ∈ Ωk, Sk(m) ∈ Ω, Ω =

l⋃
k=1

Ωk (20)

Example 2. A one-dimensional prey-predatory process in [12] is represented in
the form of the following PDE system.

ut = duuxx + fu(u, w)
wt = dwwxx + fw(w, u),

where du, dw are diffusion coefficients for the two species, respectively.

fu(u, w) =
(35 + 16u− u2

9
− w

)
u, fw(u, w) =

(
u− 5 + 2w

5

)
w. (21)

In (21) u stands for predatory (fish) density, w stands for prey (plakton) density
in an area of the ocean. When explicit scheme of time and space discretization is
used the above process is expressed in terms of a fine-grained algorithm with real
alphabet. Since two species are involved in the process, the composed parallel
local operator requires the naming set to be the union of two isomorphous parts:
Mu = {iu} and Mw = {iw}, iu, iw = 0, 1, . . . , N . Space and time steps for both
parts being identical, hu = hw = h, τu = τw = τ . The alphabet is a set of
reals, state variables being denoted as u, w. The local configurations bases have
three cells according to diffusion term discrete representation. Hence, the parallel
composition consists of two following substitutions.

Φu(iu) : {(ui−1, iu − 1), (u, iu), (ui+1, iu + 1), (w, iw)} → {(u(t + 1), iu)},
Φw(iw) : {(wi−1, iw − 1), (w, iw), (wi+1, iw + 1), (u, iu)} → {(w(t + 1), iw)},

(22)
the next states being as follows.

108 O. Bandman

u(t + 1) = u + Du(ui−1 − 2u + ui+1 + τfu(u, w)),
w(t + 1) = w + Dw(wi−1 − 2w + wi+1 + τfw(u, w)), (23)

where Du = τdu/h2 and Dw = τdw/h2

Fig. 2. Three snapshots of of the simulation of the prey-predatory process given by a
parallel local composition (22) with |N | = 251. Black line stand for u(iu), gray line
stands for for w(iw)

From (21) it is seen that with u(iu) = 5, w(iw) = 10, iu, iw = 0, 1, . . . , N , the
system is stable and nothing is going on. But, when at any place the equilibrium
is violated (Fig.2, t=0), then redistribution over the space starts on, resulting in
propagating oscillations. In Fig.2 three snapshots u(i), w(i) with t = 0, t = 1000,
and t = 3000 of the process evolution are shown. The simulation is performed
with the following parameters: the time-step τ=0.03 sec, the space-step h=120
cm, diffusion coefficients du = 0.0125cm2/sec, dw = 0.1du, which yields in Du =
(τdu/h2) = 0.05, Dw = 0.005.

4 Global Composition Methods

The global composition γ(Φ1(Ω), . . . , Φl(Ω)) is a representation of common func-
tioning of a number of global operators, expressed in terms of parallel substi-
tutions. Like in the case of local composition, sequential and parallel global
compositions are distinguished.

4.1 Sequential Global Composition

The global composition Φ(Ω) = γs(Φ1(Ω), . . . , Φl(Ω)) is said to be sequential,
when a set of parallel substitutions are applied sequentially on cellular arrays
with identical naming sets, each next operator Φk+1 being applied to the result
of the previous one, Ω(k + 1) = Φk(Ωk), k = 1, . . . , l. So, each iteration consists
of l sequentially applied parallel substitutions, the result being a single global
operator. The substep times τ1, . . . , τl, as well as the modes of operation may
differ in different components. So, (13) is valid for sequential global composi-
tion, having regard to the fact that each τk is the timestep for Φk(Ω). Hence,
the timestep of the composed global operator τ depends also on the mode of

Composing Fine-Grained Parallel Algorithms 109

operation of the components at any time being not less than the sum of time
steps of all of them.

The operation used for the sequential global composition is a global superpo-
sition.

Φ(Ω) = Φl(Φl−1(. . . (Φ1(Ω)))), (24)

Like in the local case, superposition of global operators is neither commuta-
tive nor associative. So, it is important to keep strictly the order of superposition
prescribed by the process under simulation.

Example 3. A 2D phase separation process in an active medium is represented
as a global superposition of three FG-algorithms: phase separation Boolean CA
[13], Boolean diffusion by Margolus [1], and a nonlionear reaction function.

Phase separation CA is as follows.

Φ1(Ω1) : {(vk, φk(i, j)) : φk(i, j) = (i + g, j + h), g, h ∈ {−2, 0, 2} →
{(v′, (i, j))} ∀(i, j) ∈M,

(25)

where

v′ =
{

1, if s < 24 or v = 25,
0, if s > 25 or v = 24.

where s =
2∑

g=−2

2∑
h=−2

vi+g,j+h.

Diffusion CA is represented as follows.

Φ2(Ω2) : {(v0, (i, j)), (v1, (i + 1, j)), (v2, (i + 1, j + 1)), (v3(i, j + 1))} →
{(v′0, (i, j)), (v′1, (i + 1, j)), (v′2, (i + 1, j + 1)), (v′3, (i, j + 1))},
∀(i, j) ∈M.

(26)

where

v′k =
{

v(k+1)mod4, if (rand > 0.5 & tmod2 = imod2 = jmod2 = 0),
v(k−1)mod4, if (rand < 0.5 & tmod2 = imod2 = jmod2 = 1),

k = 0, 1, 2, 3, rand is a random number in the interval [0,1]. From (26) it follows
that diffusion component iteration has two substeps:an even substep when the
even local configurations cell states are changed, and an odd substep when the
odd local configurations cell states are updated. Changing states in local configa-
rations is shifting them in the configuration blocks clockwise or counterclockwise
with probability p = 0.5.

The activeness of the medium is modeled by a reaction function, which is
given as a real function F (z) = 0.5z(1 − z), which should be applied to each
cell state of the array. Since the real function application to a Boolean array Ω2

requires the latter to be averaged, the resulting cell states should be computed
as F (〈vij〉), which is expressed in terms of substitution as follows.

Φ3(Ω2) : {(〈vij〉, (i, j))} → {(v′ij , (i, j))}, ∀(i, j) ∈M, (27)

110 O. Bandman

where
v′ij = 0.5〈vij〉(1− 〈vij〉,) 〈vij〉 ∈ [0, 1].

If a Boolean array is wanted as a final result, then Ω3 = Φ3(Ω2) should be
discretized according to (8).

So, the composed global operator is Φ(Ω) = Φ3(Φ2(Φ1(Ω1))). The composi-
tion has been applied to an initial Boolean cellular array Ω(0) with randomly
distributed v = 1 with the density Av(i, j)) ≈ 0.5 for all (v, (i, j)) ∈ Ω(0), border
conditions being periodic. In Fig.3 three snapshots of the process are shown, cel-
lular arrays being averaged for making the observation more comprehensive. It
is seen that on the first iterations the total amount of the substance decreases,
but if some concentrated spots remain large enough, the chemical activeness
enhances their growth up to the saturation.

Fig. 3. Three snapshots of averaged cellular arrays of the phase separation process
simulation according to the superposition of parallel substitutions given as (25),(26)
and (27)

4.2 Parallel Global Composition

The global composition γp(Φ1(Ω), . . . , Φl(Ω)), is called parallel, if all its global
components are to be executed in parallel. If therewith they do not interact, each
functioning on its own cellular array and using its own variables, i.e. the condition
(17) is met, then composition is referred to as a trivial parallel composition.

If the substitutions to be composed are functioning in common interacting at
every iteration, then noncontradictoriness conditions are to be satisfied. In case
of global parallel composition they are as follows.

T ′
k ⊂ M ′

k T ′
g ⊂ M ′

g

Mk ∩Mg = ∅ Ωk ∩Ωg = ∅, ∀k, g = 1, . . . , l.
(28)

It is clear, that from (28) the condition (17) for local parallel composition is
straightforward, from what it appears, that any global parallel composition is
locally parallel. The contrary is not always true.

Composing Fine-Grained Parallel Algorithms 111

In order to provide common functioning, the component substitutions should
use common state variables from any cellular array involved in the composition.
Thus, the underlying templates of the substitutions bases have nonempty in-
tersections, i.e. (18) is satisfied. Hence, they belong to the common naming set
M =

⋃l
k=1(Mk).

From the above it follows, that a parallel global composition is a set of
substitutions

γp(Φ1(Ω1), . . . , Φl(Ωl)) = {Φ1(Ω), . . . , Φl(Ω)},

each being a branch of a parallel computation, where

Φk(Ω) : Sk(m)→ S′
k(mk) Sk(m) ∈ Ω, S′

k(mk) ∈ Ωk, (29)

and

Ω =
l⋃

k=1

Ωk (30)

all Mk, k = 1, . . . , l being identical, and, hence, all Ωk, belong to one and the
same class ΩM .

Example 4. Phase separation process given by a CA Φ1(Ω1)) as a substitution
(25) in Example 3, may also be simulated by the following PDE [6].

ut = 0, 2(uxx + uyy)− 0.2(u− 0.1)(u− 0.5)(u− 0.9), (31)

After applying exlicit scheme of discretization which corresponds to a tem-
pate

T (i, j) = (u0, (i, j), (u1, (i− 1, j)), (u2, i, j + 1)), (u3, (i + 1, j)), (u4, (i, j − 1)),

the equation (31) takes a form of the following parallel substitution.

Φ2(Ω2) : {(u, (i, j)), (u1, (i− 1, j)), (u2, (i, j + 1)), (u3, (i + 1, j)), (u4, (i, j − 1))}
→ {(u(t + 1), (i, j)}.

(32)
In order to compare the evolutions generated by the above two phase sep-

aration algorithms, a parallel composition γp(Φ1, Φ2, Φ3) is constructed, where
Φ1(Ω1) given by (25) and Φ2(Ω2) given by (32) are functioning independently
and the third algorithm computes at every iteration the absolute value of the
their difference, Ω3(t) = |Ω2(t)+Ω1(t)|, Ω3(t) = {(z, (i, j))} being a real cellular
array.

Φ3(Ω) : {(〈v(i, j)〉, (i, j)} − {(u, (i, j)} → {(z(t + 1), (i, j)},
∀(i, j) ∈M3,

(33)

where according to (7) and (10)

z(t + 1) =
1
q

∣∣∣∣ q∑
k=0

vk − z

∣∣∣∣, q = |Av(i, j)|.

In Fig.4 three snapshots of Φ3(Ω) are shown.

112 O. Bandman

Fig. 4. Three snapshots of global parallel composition simulating the difference (33)
between PDE (31) and CA phase-separation model (25)

Of course, the composition of composed algorithms is also allowed provided
that all components are on the one and the same level. It means, that in local
compositions only locally composed components may be used. Similarly, in global
compositions only global ones may serve as components, which is on no account
a constraint due to the fact that any global operator is a local one applied to all
cells of the cellular array.

5 Conclusion

The proposed methodology of fine-grained algorithm composition allows to ex-
tend the domain of their application. Due to the introduced operations on cellu-
lar arrays with Boolean and real data types, it diminishes the gap between two
main types of spatial dynamics models: cellular automata and partial differential
equations. Explicit numerical methods of PDE solutions may be considered as a
bridge across the gap which makes possible the use of both types of models in a
single complex simulation task. It seems to be very important in view of modern
computational technologies oriented to be implemented on multiprocessor sys-
tems, because of the simplicity and efficiency of fine-grained algorithms parallel
realization.

References

1. Toffolli T., Margolus N.: Cellular Automata Machines. MIT Press, USA (1987)
2. Rothman D.H., Zaleski S.: Lattice-Gas Cellular Automata. Simple Models of Com-

plex Hydrodynamics. Cambridge University Press, London (1997)
3. Wolfram S.: A New Kind of Science. Wolfram Media Inc., Champaign, Ill., USA

(2002)
4. Latkin E.I.,Elokhin V.I.,Gorodetskii V.V.: Spiral concentration waves in the

Monte-Carlo model of CO oxidation over Pd(110) caused by synchronization via
COads diffusion between separate parts of catalytic surface. Chemical Engineering
Journal 91 (2003) 123-131.

5. O.Bandman. Simulation Spatial Dynamics by Probabilistic Cellular Automata.
Lecture Notes in Computer Science 2493 (Eds S.Bandini, B,Chopard,M.Tomassini)
Springer, Berlin (2002) 10-19.

Composing Fine-Grained Parallel Algorithms 113

6. Weimar J.R. Cellular Automata for reaction-diffusion systems. Parallel Computing
23 (11) (1997) 1699-1715.

7. Bandman O. Algebraic Properties of Cellular Automata: the Basis for Composition
Technique. Lecture Notes in Computer Science 3305 (Eds. Sloot P.M.A., Chopard
B., Hoekstra A.G.) (2004) 688-698.

8. Achasova S., Bandman O., Markova V., Piskunov S. Parallel Substitution Algo-
rithm. Theory and Application. World Scientific, Singapoore (1994).

9. Bandman O. Accuracy and Stability of Spatial dynamics Simulation by Cellular
Automata Evolution. Lecture Notes in Computer Science 2763 (Ed. V.Malyshkin)
(2003) 20-34.

10. O.Bandman Spatial Functions Approximation by Boolean Arrays. Bulletin of
Novosibirsk Computer Center, series Computer Science, N 19, Novosibirsk,
ICMMG (2003) 10-19.

11. Chopard B., Droz M. Cellular Automata Approach to nonequilibrium phase transi-
tion in a surface reaction model: static and dynamics properties. Journal of Phisics
A. Mathematical and General 21 (1988) 205-211.

12. Svirezhev Yu. Nonlinear waves, dissipsative structures and catastrophes in ecology.
Nauka, Moscow (1987)

13. Vichniac G. Simulating Physics by Cellular Automata. Physica D, 10 (1984) 86-
112.

Situated Agents Interaction: Coordinated

Change of State for Adjacent Agents

Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano–Bicocca,

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{bandini, manzoni, vizzari}@disco.unimib.it

Abstract. Situated Multi Agent System models are characterized by
the fact that the environment in which these autonomous entities are
placed has an explicit spatial structure influencing their behaviours and
interactions. Coordination mechanisms for agents exploiting the contex-
tual spatial information can be defined. In particular this paper focuses
on issues and proposed solutions related to the coordinated change of
state for agents positioned in adjacent places.

1 Introduction

Agent coordination represents a very active and challenging area of the research
in Multi-Agent Systems (MAS). The term coordination refers to the interaction
mechanisms that allow autonomous agents to select and carry out their actions
within a concerted framework. The separation of the agent computation model,
specifying the behaviour of a single agent, from the coordination model is a
proposal that goes back to the early nineties [6]. In particular, the concept of
Linda tuple space [5] and the related coordination language is the most diffused
metaphor adopted by current coordination languages and approaches. The basic
model has been enhanced in order to allow a distributed implementation of the
conceptually centered tuple space [14]. Moreover tuple spaces have been also
extended to allow the specification of tuple-based coordination media presenting
reactive and programmable behaviours (see, e.g., [12,13,4]), and also the specifi-
cation and enforcement of organizational abstractions and constraints (e.g. roles,
access control rules) to agent coordination [15].

Situated MASs (see, e.g., [1,8,17]) are particular agent based models which
provide the representation and exploitation of spatial information related to
agents and their position into the environment they inhabit. While the previously
defined approaches to agent coordination provide general-purpose coordination
languages and mechanisms, situated MASs present issues that could benefit from
specific mechanisms for agent interaction. For instance, the concept of field (i.e.
a signal that agents may spread in their environment, which can influence the
behaviour of other entities) has been widely adopted for the generation of coor-
dinated movements (see, e.g., [2,8]). This kind of mechanism is devoted to the
interaction of agents which may be positioned on distant points of their space,

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 114–128, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Situated Agents Interaction: Coordinated Change of State for AA 115

but there can be situations in which agents which are in direct contact (consid-
ering a discrete representation of agents’ environment) may wish to perform a
coordinated change in the respective state (for instance in order to model the
exchange of information) without causing modifications in the environment. In
fact, field based interaction and other approaches focused on modelling agent en-
vironment, are intrinsically multicast interaction mechanisms that may be useful
to represent actions and interactions that should be observable by other enti-
ties in the system. However this observability property should not automatically
characterize all possible actions and interactions of a Multi Agent model. To
this purpose, Multilayered Multi Agent Situated System (MMASS) [1] defines
the reaction action which allows the coordinated change of the states of agents
which are positioned in sites forming a clique (i.e. a complete subgraph) in the
spatial structure of their environment. This operation, which also allows a direct
exchange of information among the involved entities, is not observable by other
agents. The aim of this paper is to describe issues related to coordinated changes
in the state of situated agents, and propose approaches for the management of
these issues, with specific reference to the reaction MMASS action.

The following section will better describe the problem, showing how existing
situated MAS approaches tackle the issue of coordinated agent change of state.
Section 3 will focus on the design and implementation of mechanisms support-
ing coordinated change of state of situated agents, discussing synchronous and
asynchronous cases. Conclusions and future developments will end the paper.

2 Coordinated Change of State in Situated MASs

Despite most agent definitions emphasize the role of the environment, currently
most model do not include it as a first class abstraction. The number of situated
MAS models (that are models providing a representation of spatial features of
agent environment) is thus relatively small, and the topic of coordinating the
change of state of situated agents is still not widely analyzed.

One of the first approaches providing the possibility to define the spatial
structure of agents’ environment is represented by Swarm [10]. Swarm and plat-
forms derived by it (e.g. Repast1, Mason [7]) generally provide an explicit rep-
resentation of the environment in which agents are placed, and often provide
mechanisms for the diffusion of signals. Nonetheless they generally represent
useful libraries and tools for the implementation of simulations, but do not pro-
vide a comprehensive, formally defined interaction model. In other words they
do not provide support to the coordinated change of state among agents, but
just define and implement a spatial structure in which agents, and sometimes
signals, may be placed. Moreover, they generally provide a sequential execution
of agents’ behaviours (that are triggered by the environment, which is related to
the only thread of execution in the whole system). This approach prevents con-
currency issues and allows to obtain compact and efficient simulations even with
a very high number of entities. The price of these characteristics is essentially
1 http://repast.sourceforge.net

116 S. Bandini, S. Manzoni, and G. Vizzari

that agents are not provided with a thread of execution of their own (i.e. they
have a very limited autonomy and proactiveness), and the execution of their
behaviours is sequential (although not necessarily deterministic).

The Co-Fields [8] approach and the Tuples On The Air (TOTA) middle-
ware [9] provide the definition and implementation of a field based interaction
model, which specifically supports this kind of interaction that implies a local
modification of agents’ environment. However the defined interaction mechanism
does not provide the possibility to have a coordinated change of agent state
without such a modification. A different approach to the modelling and imple-
mentation of situated MAS [17] instead focuses on the definition of a model
for simultaneous agent actions, including centralized and (local) regional syn-
chronization mechanisms for agent coordination. In particular, actions can be
independent or interfering among each other; in the latter case, they can be
mutually exclusive (concurrent actions), requiring a contemporary execution in
order to have a successful outcome (joint actions), or having a more complex
influence among each other (both positive or negative).

The previously introduced MMASS model provides two mechanisms for agent
interaction. The first is based on the concept of field, that is a signal that may be
emitted by agents, and will spread in the environment according to its topology
and to specific rules specifying field diffusion functions. These signals may be
perceived by agents which will react according to their specific behavioural spec-
ification. The model also defines the possibility for having a coordinated change
of agent state through the reaction operation. The outcome of this joint action
depends on three factors:

• agents’ positions : reacting agents must be placed in sites forming a complete
subgraph in the spatial structure of the environment;
• agents’ behavioural specifications : agents must include compatible reaction ac-
tions in their behavioural specification;
• agents’ willingness to perform the joint action: one of the preconditions for
the reaction is the agreement among the involved agents.

The following section will discuss issues related to the design and imple-
mentation of this operation, but several considerations are of general interest in
the development of mechanisms supporting the coordinated change of state for
situated agents.

3 Reaction

Reaction is an activity that involves two or more agents that are placed in sites
forming a clique (i.e. a complete subgraph) and allows them to change their state
in a coordinated way, after they have performed an agreement. The MMASS
model does not formally specify what this agreement process consists of, and how
the activities related to this process influence agent behaviour. This choice is due

Situated Agents Interaction: Coordinated Change of State for AA 117

begin
turn:=0;
do

begin
localContext:=environment.sense(turn);
nextAction:=actionSelect(localContext);
outcome:=environment.act(nextAction,turn);
if outcome<>fail then

turn:=turn+1;
end

while(true);
end

Fig. 1. Agent behaviour thread in a synchronous situation.

to the fact that such an agreement process could be very different in different
application domains (e.g. user authentication, transactions). For instance, in
some of these situations an agent should block its activities while waiting for the
outcome of the agreement process, while in others this would be unnecessary.
Especially in a distributed environment this agreement process could bring to
possible deadlocks, and in order to better focus this subject, more details on
internal mechanisms related to agent, to the environment and its composing
parts must be given.

3.1 Synchronous Environments

In synchronous situations a global time step regulates the execution of agents
actions; in particular, every agent should be allowed to carry out one action per
turn. In order to enforce synchronicity, the management of system time step and
agent actions can be delegated to agents’ environment, that they invoke not only
for functional reasons (i.e. perform an action which modifies the environment)
but also to maintain system synchronicity (i.e. agent threads are put into a
wait condition until the environment signals them that the global system time
step has advanced). This proposal assumes that agents are provided with one
thread of execution, and also provides that the environment has at least one
thread of execution of its own. In fact the environment is responsible for the
management of field diffusion (more details on this subject can be found in [3]),
other modifications of the environment (as consequences of agents’ actions), and
to enforce system synchronicity.

In the following, more details on agent and environment activities and threads
of execution will be given; the situation that will be considered provides one
thread for every agent, and a synchronous system. The described approach is
valid both for centralized and for distributed situations; in the latter case one of
the sites must be elected as a representative of the whole environment, and inter-
actions with the environment can be implemented through a remote invocation
protocol (e.g. RMI or others, according to the chosen implementation platform).

Agent Behaviour Management Thread. The sequence of actions performed
in the agent behaviour thread is the following:

118 S. Bandini, S. Manzoni, and G. Vizzari

begin
turn:=0;
do

begin
until(forall i in 1..n, agent_i.actionperformed=true)

begin
collect(agent_i,action,agentTurn)
if agentTurn=turn then

begin
manage(agent_i,action, turn);
agent_i.actionperformed:=true;
end

else
agent_i.wait();

end
turn:=turn+1;
forall i in 1..n

agent_i.actionperformed:=false;
notifyAllAgents();
end

while(true);
end

Fig. 2. Environment behaviour thread in a synchronous situation

– sense its local context : in order to understand what are the actions whose
preconditions are verified, the agent has to collect information required for
action selection, and more precisely: active fields in the site it is positioned
on and adjacent ones; agents placed in adjacent sites, and their types;

– select which action to perform: according to the action selection strategy
specified for the system (or for the specific agent type), the agent must
select one action to be performed at that turn (if no action’s preconditions
are satisfied, the agent will simply skip the turn);

– perform the selected action: in order to perform the previously selected ac-
tion, the agent must notify the environment, because the action provides
a modification of agent’s local context or even simply to maintain system
synchronicity.

The last step in agent behavioural management cycle may cause a suspension
of the related thread by the environment. In fact an agent may be trying to
perform an action for turn t while other ones still did not perform their actions
for turn t− 1. A pseudo-code specification of agent behavioural thread sequence
of activities is shown in Figure 1. Agents must thus keep track of current turn
and of the previously performed action. In fact, as will be introduced in the
following subsection, system dynamics might require an agent to reconsider its
action when it is involved in a reaction process.

Environment Management Thread. The environment, more than just man-
aging information on agents’ spatial context, also acts as a monitor in order
to handle concurrency issues (e.g. synchronization, agreements among agents).
Agents must notify the environment of their actions, and the latter will manage
these actions performing modifications to the involved structures (e.g. sites and
active fields) related to the following turn. The state of the current one must be
preserved, in order to allow its sensing and inspection by agents which still did

Situated Agents Interaction: Coordinated Change of State for AA 119

procedure reactionManagement(agent, action, turn)
begin
involvedAgents:=action.getReactionPartners();
reactingAgents:=new list();
reactingAgents.add(agent);
agreed:=true;
forall agent_i in involvedAgents

begin
if agent_i.agreeReaction(involvedAgents) = false then

begin
agreed:=false;
break;
end

reactingAgents.add(agent_i);
end

if agreed=true then
forall agent_i in reactingAgents

agent_i.performReact(turn);
else

forall agent_i in reactingAgents
agent_i.notifyFailure(turn);

end

Fig. 3. Reaction management procedure in a synchronous situation

not act in that turn. The environment may also put an agent into a wait con-
dition, whenever performing its action would break system synchronicity. This
wait ends when all agents have performed their action for the current turn, and
thus all entities are free to perform actions for the next one. The environment
must thus keep track of the actions performed by agents in the current turn, and
then notify waiting agents whenever system time advances. More schematically,
a pseudo-code description of the environment thread of execution is shown in
Figure 2. In particular the manage function inspects the specified action (which
includes the required preconditions and parameters), checks if it is valid and
then calls the appropriate subroutines which effectively perform actions. The
previously introduced sequences require a slight integration to specify how re-
action actions are managed. In this case the beginning of an agreement process
stops other agent actions until this process is over, either positively (when all
other involved agents agreed) or negatively (when the agreement failed). In this
way, also system time advancement is stopped until the reaction process is over,
preserving system synchronicity.

The reaction is triggered by the agent which first requires the execution of
this action to the environment. The latter becomes the leader of the group of
involved agents, queries them asking if they agree to take part in the reaction, if
an agreement is reached it signals them to change their state, then starts again
the normal system behaviour, allowing the advancement of global system time
step and thus agent execution. More schematically the environment procedure
devoted to the management of reaction is shown in Figure 3. An agent receiving
a notifyFailure will have a fail outcome, and thus will not advance its time
step and will start over again its behavioural cycle for the current turn. The
reactionManagement procedure is one of the specific subroutines invoked by
the the environment thread of execution previously shown in Figure 2 through
the manage function.

120 S. Bandini, S. Manzoni, and G. Vizzari

Agent-1

Environment

2: emit

1: trigger

2.1: diffuse

n: transport

Agent-2

Agent-n

n.1: move

n.2: advance

3: emit

Agent-1

Environment

2: react [Agent-2, Agent-3]

Agent-2

Agent-3

2.6: advance

(a)

(b)

1.1: actionDone

2.1: agree [Agent-1, Agent-3]

2.1.1: agreed

2.2: agree [Agent-1, Agent-2]

2.2.2: agreed

2.5: performReact

2.3: performReact

2.4: performReact

2.2.1: select

1.1: actionDone

1: trigger

Fig. 4. A sample scenario illustrating the evolution of a centralized synchronous
MMASS system

Examples. A sample scenario illustrating the evolution of a centralized syn-
chronous MMASS system is shown is Figure 4. Scenario (a) provides the presence
of a set of agents (Agent-1, . . . , Agent-n), which do not require the execution of
reaction actions. The system dynamics is the following:

• Agent-2 performs a trigger (action 1);
• Agent-1 emits a field (action 2) and as a consequence the environment per-
forms its diffusion (action 2.1);
• Agent-2 also tries to perform an emission (action 3), but the environment puts
it into a wait condition, as other agents did not perform their actions in that
turn;
• agents that are not shown in the Figure perform their actions, which are man-
aged by the environment;
• eventually Agent-n performs a transport action (action n), and as a conse-
quence the environment performs its movement (action n.1), advances system
time (action n.2) and eventually notifies agents. Agent-2 emit action (action 3)
will now be managed.

Situated Agents Interaction: Coordinated Change of State for AA 121

begin
do

begin
localContext:=mysite.sense();
nextAction:=actionSelect(localContext);
outcome:=site.act(nextAction);

while(true);
end

Fig. 5. Agent behaviour thread in an asynchronous situation

A different case is shown in scenario (b), which exemplifies the sequence
generated by a reaction request. Agent-1, Agent-2 and Agent-3 are positioned
in sites forming a clique. In this case system dynamics is the following:

• Agent-3 performs a trigger (action 1);
• Agent-1 requires the environment to perform a reaction with Agent-2 and
Agent-3 (action 2);
• as a consequence to this request, the environment asks Agent-2 if it intends
to agree in preforming the reaction (action 2.1) and it receives a positive reply
(action 2.1.1); the environment then asks Agent-3 if it wishes to reconsider its
action for the current turn (action 2.2); the agent performs anew an action
selection (action 2.2.1) and decides to agree(action 2.2.1);
• the environment indicates all involved agents that they must perform the
reaction (actions 2.3 – 2.5) and then advances system time.

Discussion. The previously described approach to the management of agents,
their cycle of execution, their environment and reaction mechanisms provides a
key role of the environment, which represents a sort of medium ensuring specific
properties, and especially system synchronicity. This is a global feature of the
system, and the simplest way to ensure it is to have a conceptually centralized
unit to which all entities must refer in order to perform their actions. This
medium and coordination models providing a centralized medium (e.g. a tuple
space) seem thus similar, in fact, both provide an indirect interaction among
agents and must tackle issues related to the concurrent access to shared resources.
The main difference is the fact that, for instance, a Linda tuple space does not
provide abstractions for the definition of spatial information (e.g. a topology,
an adjacency relation), that should be modelled, represented and implemented.
An interesting feature of advanced artifact based interaction models, and more
precisely reactive and programmable tuple spaces, is the possibility to specify
a behaviour for the artifact, which could be a way to implement interaction
mechanisms defined by the MMASS model.

The described approach provides computational costs that could be avoided,
in a centralized situation, by providing a single thread of execution, preventing
synchronization issues by activating agents in a sequential (although non nec-
essarily deterministic) way (i.e. adopting the approach exploited by Swarm–like
simulation platforms). Whenever autonomy and proactiveness are not central
elements in agent modelling, this could be a feasible and cost effective choice.
It could be the case of simulations characterized by a large number of enti-

122 S. Bandini, S. Manzoni, and G. Vizzari

begin
do

begin
reactionRequest:=mysite.getReactionRequest();
newReactManager:=new ReactManagerThread(reactionRequest);
newReactManager.start();

while(true);
end

Fig. 6. Agent reaction detection thread in an asynchronous situation

ties endowed with very simple behavioural specification. However, the described
approach can useful when integrating into a single environment entities char-
acterized by a higher degree of autonomy, proactiveness and heterogeneity (for
instance, reactive and deliberative agents developed with deeply different ap-
proaches).

3.2 Asynchronous Environments

In an asynchronous situation, the mechanisms for the management of agents
and their interactions with the environment, are on one hand simpler than in
a synchronous case (i.e. there is no need to ensure that every agent acts once
per turn), but can also be more complex as there are less constraints on action
timings. In a centralized situation, it is still possible to delegate the management
of shared resources to an environment entity, whose task is actually simpler than
in a synchronous situation as it does not have to maintain global system syn-
chronicity, although it must guarantee the consistent access to shared resources.
In a distributed and asynchronous situation, even if it would be possible to elect
a single representative of agents’ environment (like in the synchronous and dis-
tributed case, described in the previous Section), this possibility would represent
a bottleneck and is not even necessary. In fact, the main reason for the presence
of a single representative of agent environment was to assure system synchronic-
ity. This Section will then focus on a distributed and asynchronous scenario, and
will describe a distributed approach providing the collaboration of sites, instead
of a single centralized environment, for the management of coordinated change
of agents’ states.

Agent Related Threads. As previously introduced, agents will now collab-
orate directly with the sites they are placed on, and their behavioural threads
must thus be changed. A pseudo-code formalization of agent behaviour thread
in an asynchronous situation is shown in Figure 5.

Another change that can be introduced in the agent is the presence of a
distinct thread for the management of reaction requests. In fact the agreement
process required by the reaction process can require a certain number of in-
teraction among agents which are placed in computational units spread over a
network. This means that a relevant delay may occur from the beginning of an
agreement process and its outcome (either positive or negative). Being in an
asynchronous situation there is no need to stop agent behavior in order to wait
for this process to end. An agent may be provided with three kinds of threads:

Situated Agents Interaction: Coordinated Change of State for AA 123

begin
myReactAction:=this.getAction(reactionRequest);
if myReactAction<>null then

begin
if reactionRequest.author <> this then

begin
agreed:=checkAgreement(reactionRequest);
site.replyReactReq(reactionRequest, agreed);
end

if agreed=true then
begin
agreemReached:=site.getReactAgreement(reactionRequest);
if agreemReached=true then

this.changeState(myReaction.nextState);
end

end
else

site.replyReactReq(reactionRequest, false);
end

Fig. 7. Agent reaction management thread in an asynchronous situation

– its behavioural thread, which is very similar to the one related to the syn-
chronous situation, and whose structure is shown in Figure 5;

– a thread which is devoted to the detection of reaction requests; this thread
is responsible to query the site for pending reaction requests (which may
occur concurrently) and start the third kind of thread which will manage
the agreement process; a pseudo-code formalization of this thread is shown
in Figure 6;

– threads that are devoted to the effective management of the reaction process;
a pseudo-code formalization of this thread is shown in Figure 7. This kind
of thread must check if the agent effectively agrees to perform the reaction,
through the checkAgreement invocation (only if it is not the one which ac-
tually started the reaction process). This means that first of all the agent
must have a react action matching the one specified by the request (this is
checked through the getAction invocation). Then it must wait the notifi-
cation of the success or failure of the agreement (the getReactAgreement
invocation may in fact suspend this thread) and, in the former case, change
the agent state.

Site Related Threads. Similar considerations on the internal structure of
agents may be also done for sites. The latter act as a interfaces between agents
and the rest of the environment, and must manage events generated both in-
ternally and externally. In particular, internal events are generated by an agent
that is positioned on the site, and more precisely they are the following ones:

– sense the local context : the site must provide an agent with the information
it needs to select which action it may perform (active fields in the site and
adjacent ones, agents in adjacent positions and related types);

– transport request : when an agent attempts a transport action, the site it is
positioned on must communicate with the destination one in order to verify
if it is empty, and eventually allow the agent movement, which frees the
current site;

124 S. Bandini, S. Manzoni, and G. Vizzari

– reaction request : upon reception of a reaction request by the overlaying agent,
the site must propagate it to involved agents’ sites, which in turn will notify
them. The site must wait for their replies and then notify all involved entities
of the agreement operation outcome; in other words, the site where the
reaction is generated is the leader of the group of involved sites; a pseudo-
code formalization of the reaction management procedure for the leader site
is shown in Figure 8;

– field emission: when a field is generated in a site it must be added to the
set of active fields present in the site, and it must be propagated to other
adjacent sites according to the chosen diffusion algorithm.

With reference to reaction, and especially on the selection of a leader site,
there are some additional elements that must be integrated with the previous
description of site behaviour. In an asynchronous environment, there is the pos-
sibility that two agents concurrently start two related reactions. For instance,
given three agents A, B and C, placed in sites forming a clique, agent A and
Agent B require their respective sites to react among themselves and with agent
C. There is not a single site which started the reaction, so a leader must be
chosen. Whenever this kind of situation occurs an election protocol must be in-
voked. The first and probably simplest solution, is to associate a unique identifier
related to every site (a very simple way of obtaining it could be the adoption of
a combination of the IP address and TCP port related to the site) and assume
that the one with the lowest identifier becomes the leader of the reaction group,
and others will behave as the reaction request was generated by the leader.

Externally generated events are consequences of internal events generated by
agents in other sites; more precisely they are the following ones:

– inspect the site: upon request, the site must provide to adjacent sites infor-
mation related to active fields and to the presence (or absence) of an agent
in it;

– diffusion propagation: when a field generated in a different site is propagated
to the current one the latter must evaluate its value through the related
diffusion function and, if the value is not null, it must propagate the field to
other adjacent sites according to the adopted diffusion algorithm;

– reaction request : upon reception of a reaction request by the leader of a
reaction group, the site must forward it to the overlaying agent, wait for
its response and transmit it back to the leader; then it must wait for the
outcome of the reaction and notify the overlaying agent; a more schematic
description of non-leader sites behavior for management of reaction is shown
in Figure 9;

– transport : when a remote agent attempts a transport action, the destination
site must verify if its state has changed from the previous inspection per-
formed by the agent, and if it is still empty will allow the transport action,
blocking subsequent incoming transports.

Site is thus responsible for many concurrent activities; the proposed approach
provides thus to endow a site with two threads, respectively detecting internal

Situated Agents Interaction: Coordinated Change of State for AA 125

procedure reactionManagement(agent, action)
begin
involvedAgents:=action.getReactionPartners();
reactingAgents:=new list();
reactingAgents.add(agent);
agreed:=true;
forall agent_i in involvedAgents

begin
adjSite:=agent_i.getSite();
adjSite.reqAgreement(action);
end

until(forall a in involvedAgents, a.gotResponse)
begin
if receiveAgreeResp(agent_i,action) = false then

begin
agreed:=false;
break;
end

reactingAgents.add(agent_i)
end

if agreed=true then
forall agent_i in reactingAgents

begin
adjSite:=agent_i.getSite();
adjSite.performReact(action);
end

else
forall agent_i in reactingAgents

begin
adjSite:=agent_i.getSite();
adjSite.performReact(adjSite);
end

end

Fig. 8. Reaction management procedure for the leader site in an asynchronous situation

and external events. These threads are also able to generate additional ones
which effectively manage these events.

Inter-thread Communication. Both agents and sites are provided with a
set of threads which must be able to communicate among themselves in a
safe and consistent way. For instance, agent reaction management thread in
an asynchronous situation communicates to the underlying site by means of a
replyReactRequest invocation (see Figure 7). The latter performs a write op-
eration on a thread-safe queue, that is a structure with synchronized accessors
(observers and modifiers) that may be accessed by site threads but also by the
ones related to the agent that is placed on it. The replyReactRequest invoca-
tion inserts an event in this queue, and notifies threads that were waiting for
the generation of events. In this case the thread interested in the agent reply to
the reaction request is the one related to the underlying site which effectively
manages the agreement process with other involved entities. It could be either
the leader, which is put into a wait condition by the and the receiveAgreeResp
invocation (see Figure 8), or any other involved site, which is put into a wait
condition by a getReactReply invocation (see Figure 9).

Precautions on Network Communication. So far the possibility to have
failures in network transmission was not considered, as the design of a robust dis-
tributed protocol for reaction management is not the focus of this work. Moreover

126 S. Bandini, S. Manzoni, and G. Vizzari

procedure reactionManagement(site, action)
begin
if this.agent <> null then

begin
this.agent.notifyReaction(action);
agreed:=getReactReply(agent,action);
site.replyReact(agreed);
if agreed=true then

if site.reqAgreement()=true then
this.agent.setReactAgreement(action,true);

end
else

site.replyReact(false);
end

Fig. 9. Reaction management procedure for non-leader sites in an asynchronous situ-
ation

the chosen technologies supporting network communication could implement
mechanisms assuring a reliable form of communication. However, considering the
simple loss of messages related to the orchestration of reaction, a simple protocol
providing the transmission acknowledgements and the definition of timeouts in
order to avoid deadlock situations could be easily implemented. Whenever this
kind of issue is detected, the agents’ threads related to the management of reac-
tion could simply try to repeat the whole process from the beginning. Moreover,
the fact that every agent is related to multiple threads of control, greatly reduces
the dangers and issues related to possible deadlocks: the agent behaviour thread
is separated from the management of reactions, and the same can be said for
what concerns site specific functions (e.g. threads related to field diffusion are
separated from those managing reactions). Thus, a failure in a reaction process
does not hinder the possibility of the agent to continue its behaviour, leaving
aside the specific reaction that caused the problem. The price of these advantages
is that agents and sites are more complex from a computational perspective, and
require more resources both in terms of memory and processor time. There are
also functional requirements that must be considered: the execution of an action
during an agreement process might change the preconditions that brought an
agent to accept the reaction proposal. This could represent a serious issue, and
in this case the possibility of the reaction management thread to temporarily
block the agent behavioural one should be introduced, suitably exploiting the
inter thread interaction mechanism.

Discussion. Some of the concurrency issues that were described in this Section
are common also in direct agent interaction models. In fact, they are generally
designed to work in an asynchronous situation in which messages may be sent
and received at any time. In order not to miss any message, the communica-
tion partners require some kind of indirection mechanism and structure (e.g.
mailboxes in Zeus [11], and queues in Jade [16]).

Unlike the synchronous approach, in this case no single entity managing the
coordinated change of state among agents is provided. While managing this kind
of operation in a distributed way provides a more complex implementation of
sites, to which this activity is delegated, this approach seems more suitable in

Situated Agents Interaction: Coordinated Change of State for AA 127

distributed situations, unless synchronization is absolutely necessary. In fact, a
single entity managing this operation may represent a bottleneck and a single
point of failure, hindering system robustness.

4 Conclusions and Future Developments

The paper has discussed issues related to the coordinated change of state for
situated MASs, proposing specific solutions for synchronous and asynchronous
situations. In particular, the MMASS reaction action was considered as a specific
case of coordinated change of state in situated agents, but most considerations
are of general interest in the design and implementation of mechanisms support-
ing this form of coordinated action in situated MASs. In particular the approach
described in [17] provides a similar approach to situated agents coordination: in
fact it provides a centralized synchronization, similar to the one provided by
the environment described in Section 3.1. A distributed mechanism for agent
coordination is also described, but it provides a personal synchronizer for every
agent while in the approach described in Section 3.2 every site is responsible for
providing this kind of service to the hosted agent.

References

1. Stefania Bandini, Sara Manzoni, and Carla Simone, “Heterogeneous Agents Situ-
ated in Heterogeneous Spaces.,” Applied Artificial Intelligence, vol. 16, no. 9-10,
pp. 831–852, 2002.

2. Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari, “Situated Cellular Agents:
a Model to Simulate Crowding Dynamics,” IEICE Transactions on Information
and Systems: Special Issues on Cellular Automata, vol. E87-D, no. 3, pp. 669–676,
2004.

3. Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari, “Towards a Specification
and Execution Environment for Simulations Based on MMASS: Managing At–a–
distance Interaction,” in Proceedings of the 17th European Meeting on Cybernetics
and Systems Research, 2004, pp. 636–641, Austrian Society for Cybernetic Studies.

4. Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli, “MARS: a Pro-
grammable Coordination Architecture for Mobile Agents,” IEEE Internet Com-
puting, vol. 4, no. 4, pp. 26–35, 2000.

5. David Gelernter, “Generative Communication in Linda,” ACM Trans. Program.
Lang. Syst., vol. 7, no. 1, pp. 80–112, 1985.

6. David Gelernter and Nicholas Carriero, “Coordination Languages and Their Sig-
nificance,” Communications of the ACM, vol. 35, no. 2, pp. 97–107, 1992.

7. Sean Luke, G. C. Balan, Liviu A. Panait, C. Cioffi-Revilla, and S. Paus, “Mason:
a Java Multi-Agent Simulation Library,” in Proceedings of Agent 2003 Conference
on Challenges in Social Simulation, 2003.

8. Marco Mamei, Franco Zambonelli, and Letizia Leonardi, “Co-fields: Towards a Uni-
fying Approach to the Engineering of Swarm Intelligent Systems,” in Engineering
Societies in the Agents World III: Third International Workshop (ESAW2002).
2002, vol. 2577 of LNAI, pp. 68–81, Springer–Verlag.

128 S. Bandini, S. Manzoni, and G. Vizzari

9. Marco Mamei and Franco Zambonelli, “Programming Pervasive and Mobile Com-
puting Applications with the Tota Middleware,” in 2nd IEEE International Con-
ference on Pervasive Computing and Communication (Percom2004). 2004, pp. 263–
273, IEEE Computer Society.

10. Nelson Minar, Roger Burkhart, Chris Langton, and Manor Askenazi, “The Swarm
Simulation System: A Toolkit for Building Multi-Agent Simulations,” Working
Paper 96-06-042, Santa Fe Institute, 1996.

11. Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Collis, “Zeus:
A toolkit for Building Distributed Multiagent Systems,” Applied Artificial Intelli-
gence, vol. 13, no. 1-2, pp. 129–185, 1999.

12. Andrea Omicini and Enrico Denti, “From Tuple Spaces to Tuple Centres,” Science
of Computer Programming, vol. 41, no. 3, pp. 277–294, 2001.

13. Andrea Omicini and Franco Zambonelli, “Coordination for Internet Application
Development,” Autonomous Agents and Multi-Agent Systems, vol. 2, no. 3, pp.
251–269, Sept. 1999, Special Issue: Coordination Mechanisms for Web Agents.

14. Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman, “Lime: Linda
Meets Mobility,” in Proceedings of the 21st International Conference on Software
Engineering (ICSE99). 1999, pp. 368–377, ACM press.

15. Alessandro Ricci, Mirko Viroli, and Andrea Omicini, “Agent Coordination Con-
text: from Theory to Practice,” in Proceedings of the 17th European Meeting on
Cybernetics and Systems Research, 2004, pp. 618–623, Austrian Society for Cyber-
netic Studies.

16. Giovanni Rimassa, Runtime Support for Distributed Multi-Agent Systems, Ph.D.
thesis, University of Parma, January 2003.

17. Danny Weyns and Tom Holvoet, “Model for Simultaneous Actions in Situated
Multi-Agent Systems,” in First International German Conference on Multi-Agent
System Technologies, MATES. 2003, vol. 2831 of LNCS, pp. 105–119, Springer–
Verlag.

Optimal Behavior of a Moving Creature in the

Cellular Automata Model

Mathias Halbach and Rolf Hoffmann

TU Darmstadt, FB Informatik, FG Rechnerarchitektur,
Hochschulstraße 10, D-64289 Darmstadt,

Phone: +49 6151 16 {3713, 3606}, Fax: +49 6151 16 5410
{halbach, hoffmann}@ra.informatik.tu-darmstadt.de

Abstract. The goal of our investigation is to find automatically the best
rule for a cell in the cellular automata model. The cells are either of type
Obstacle, Empty or Creature. Only Creature can move around in
the cell space and can perform one of the four actions: if the path to the
next cell is blocked: turn left or right, if the path is free: move ahead and
simultaneously turn left or right. The task of the creature is to cross all
empty cells with a minimum number of steps. The behavior was modeled
using a variable state machine represented by a state table. Input to the
state table is the neighbor’s state in front of its moving direction. The
goal is to find the absolutely best rule in the set of all possible rules.
The search space grows exponentially with the number of states. As
simulation, testing and evaluating the quality are very time consuming
in software, the migration of the problem to a parallel hardware platform
is a promising solution. In order to reduce the computation time, the
search procedure was (1) implemented in hardware and (2) solutions
which are equivalent under state permutations were not generated and
(3) solutions which show or expect bad or trivial behavior were excluded
as soon as possible in a preselection phase. Exactly six different five-state
algorithms could be detected, which allow to cross all empty cells for all
the given initial configurations. We described this model in Verilog HDL
and in AHDL. A hardware synthesizing tool transforms the description
into a configuration file which was loaded into a field programmable gate
array (FPGA). Hardware implementation offers a significant speed up of
many thousands compared to software.

1 Introduction

We are presenting results of the project “Behavior of Artificial Creatures and
their Simulation under Massively Parallel Hardware”. The general goal of the
project is the design of a massively parallel model which allows describing many
moving and learning creatures in artificial worlds. The simulation of such models
is very time consuming and therefore the model should be massively parallel in
such a way that it can efficiently be supported by special hardware or multipro-
cessor systems. There are many fields of applications for such artificial worlds:

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 129–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

130 M. Halbach and R. Hoffmann

– Synthetic worlds: Games, genetic art, optimization of the behavior of the
creatures to reach global goals, social behavior, self organization.

– Computational worlds: Creatures are considered as active moving objects.
Passive objects contain data. Creatures are programmed or are able to learn
to solve a complex algorithmic problem.

2 Previous Work

Cellular Automata (CA). The popular CA model dates back to J. von Neu-
mann. Well known are the self replication rules of Von Neumann and Conway
(LIFE). In our group the language CDL [7] was defined to describe such rules
in an easy and concise way. CDL was enhanced to CDL++ [8] in order to de-
scribe moving objects and features to resolve conflict situations. A number of
FPGA-based configurable special processors were developed to support the CA
model in hardware (CEPRA family) [9]. We have shown that CA can efficiently
be implemented in FPGA logic reaching speed-ups up to thousands compared
to software implementations on a PC [6][5].

Global Cellular Automata (GCA). [10, etc.] For the simulation of artificial
worlds direct communication between arbitrary cells should be available. The
CA model offers only local communication. Global communication between re-
mote cells has to be emulated step by step through local communication. A new
massively parallel model called GCA was defined, which allows direct access to
any remote cell. The model is more complex than the CA, but it can still be
computed in a synchronous parallel way like the CA because there are no write
conflicts. As the model allows long distance communication it is better suited
for complex Artificial Life problems. This model will not be used for the pre-
sented problem but is well suited for problems where creatures can move and
communicate over long distances in one time step. Other related models are the
PSA [1] model and the pointer machines [15].

Other Work. This work is related to the general research field Artificial Life.
Steven Levy gives in his book [12] an overview over this field. Thomas Ray
[14], an American environmentalist and bio-scientist has developed a simulation
program allowing the simulation of artificial individuals. The individuals are
able to mutate and they survive only if they have certain fitness. He developed
the language TIERRA to describe the behavior of the individuals by simple
programs based on 32 different instructions. Individuals are able to learn and
to use program parts from other individuals. There is a lot of other relevant
work which will not be discussed here in detail, like Genetic Algorithms, Neural
Networks, Classifier Systems, and Rule Based Learning Models. The task to find
a path to all cells is also related to space filling curves like the Hilbert curve and
to the snake tiling problem [11]. In [13] an agent learns smart behavior which is
stored in a FSM table using a reinforcement learning procedure.

Optimal Behavior of a Moving Creature in the Cellular Automata Model 131

3 The Task: Cross All Empty Cells in Shortest Time

We have studied a simplified problem in order to perceive the open questions
and to find some first solutions in the context of learning creatures. The problem
is defined as follows.

Consider a two-dimensional grid of cells. There are three types of objects:
Obstacle, Empty, or Creature. Border cells and obstacles are both modeled
as Obstacle and they are located at fixed positions. Creature is a more
complex type with a simple brain and it is able to move around. All these
objects act according to a given set of rules which are as follows: Creature is
variable in nature, it can move within the space from one place to other but it
cannot go to a cell where a border cell or an obstacle is placed. At any time the
creature can look in a certain direction one cell ahead and it will move in that
direction if possible.

The actions. The creature may perform four different actions.

– R (turn Right)
– L (turn Left)
– Rm (turn Right and move) move forward and simultaneously turn right
– Lm (turn Left and move) move forward and simultaneously turn left

If the path (one cell ahead) is not free because of obstacle or border, either
action R or L will be performed. If the path is free, either action Rm or Lm is
performed (fig. 1).

(a) if not free then L or R

(b) if free then Lm or Rm

Fig. 1. The actions of the creature

Initial configuration. At the beginning the number and the placement of the
obstacles are given. Also the creature is placed in a certain start position with
a defined direction.

Goal. The goal is to find an optimal and simple local algorithm for the creature
to cross a maximum number of empty cells with a minimum number of time
steps for a given set of initial configurations.

132 M. Halbach and R. Hoffmann

3.1 CA-Model of the Moving Creature

To keep the problem simple, the moving of the creature is emulated in the CA
model according to the following rules (in simplified pseudo code). The center
cell is called My.

Rule for My.Type = Empty
(a1) {CASE Free}

if (Neighbor.Type = Creature) and
(Neighbor.Direction points to My) then
My.Type := Creature //create (move by copy)
My.Direction := TurnRight/Left (Neighbor.Direction) //new direction

Rule for My.Type = Creature
(a2) {CASE Free}

if (ahead Neighbor.Type = Empty) then My.Type := Empty //delete
(b) {CASE not free}

My.Direction:= TurnRight/Left (My.Direction) //only turn R, L

In case a1 and a2 where a creature can move ahead in its direction, it changes
its own type to Empty (case a2) and at the same time a new creature will be
created by the empty cell ahead of the creature (case a1). In case b where the
cell cannot move, it will only turn right or left.

3.2 Behavior of the Creature

The behavior of the creature can be either fixed or variable. We have experi-
mented with a variable behavior in order to find optimal solutions for our prob-
lem. In our first approach we use a variable state machine for that purpose.
The state machine can also be seen as control logic, intelligence or brain of the
creature.

To study the basic problems with variable behavior (fig. 2) we reduced the
intelligence to a minimum. The intelligence is stored in a state machine with two
state tables called TableFree and TableNotFree. Input to the tables is the state S
which is either 0 or 1 (if the brain is modeled only with two states). TableFree is
selected if the creature is able to move, TableNotFree is selected if the creature
cannot move because an obstacle or border is in front.

The principle of operation will be explained for the case of two states. There
are totally 256 different two-state algorithms, because each table consists of four
bit. The tables can be concatenated to one table with 8 bit information. These
8 bits can be represented as a number. E. g. the algorithm 0x39 shown in fig. 2
is abbreviated 0R1L-1R0L. The number 0x39 is the hexadecimal equivalent to
0011-1001, where R is coded with 0 and L is coded with 1. The first part 0R1L
is the line by line contents of TableNotFree, the second part is the line by line
contents of TableFree. The second part can also be written as 1Rm0Lm, where
Lm means: turn left and move, Rm means: turn right and move. This algorithm
can be represented clearer as a state graph (fig. 2(c)).

Optimal Behavior of a Moving Creature in the Cellular Automata Model 133

1 R

0 L

0

1

S D

Turn D

0 R

1 L

0

1

S D

Turn

Neighbor
Creature

CreatureCanMoveCreature cannot move

TableNotFree TableFree

(b)(a)

S
State

Empty Cell

0

1

R

L

RmLm

dotted line: creature cannot move
continuous line: creature can move

(c)

Fig. 2. Table driven state machine (a, b). Two-state algorithm 0x39 as state graph (c)

In the general case where the different values of the states, inputs and outputs
are not restricted to powers of two, the number of different algorithms will be

N = (s y)(s x)

where s is the number of used states, x is the number of different input states
and y is the number of different output actions. The set of N algorithms can
be divided into classes of equivalent algorithms with respect to state encoding
permutations. Note that N increases dramatically which makes it impossible to
check sequentially the quality of all algorithms in a reasonable time.

We liked to characterize the number of possible algorithms with a smaller
number. We have defined the “capacity of intelligence” (COI) to be the minimum
number of bits which are necessary to code all possible algorithms including
permutations.

COI = ld N, or N = 2 COI

For example x = y = 2, s = 5: N = (2s)2s = 1010. COI(1010) = 33.2. In
our implementation using a binary state table the states, inputs and outputs are
coded in different bit strings. For the above example the state table has a size
of 64 bits.

4 Experimental Result of Optimal Rules

We have evaluated all two-state, all four-state and all five-state rules. Whereas
we were able to check all four state-algorithms in optimized software, we needed
hardware support to check all five-state-algorithms (see section 5).

The two-state table contains 8 bit of information. Each code corresponds to
a certain algorithm.

Input to the state-machine algorithm is the old control state S and the signal
X = CreatureCanMove . Output is Y = L/R. In case of X = true the creature

134 M. Halbach and R. Hoffmann

turns left or right and moves forward, in case X = false the creature turns left
or right without moving. The creature can learn and optimize the algorithm by
itself. Before implementing the procedure to detect the optimal rule in hard-
ware we used a software simulation which tried out all possible algorithms by
enumeration and evaluation.

for all algorithms do
for all configurations do

count the cells which are crossed and how many steps are needed
evaluate the quality

All algorithms were tested for the following five configurations (fig. 3).

Fig. 3. The initial configurations 1 to 5 from left to right

In order to reduce simulation time, algorithms (tables) were deleted in ad-
vance if not all possible states are used. Also the further simulation was aborted
when a path turned out to be a loop or the number of crossed cells did not
increase after a certain time.

Two-State Algorithms. The best average algorithms found are algorithm 0x39
with 61 % crossed cells and algorithm 0x6C with 60 % crossed cells (table 1).
The number of time steps (generations) was big enough that no improvement
over time was possible. It can be realized, that no two-state algorithm exists,
which is able to cross all cells for all these configurations.

Table 1. The best two states algorithms 0x39 = 0R1L 1R0L and 0x6C = 0L1R 1L0R

Crossed Cells config. 1 config. 2 config. 3 config. 4 config. 5 crossed % av.

Empty cells 50 64 58 53 48

Algorithm 0x39 50 22 28 34 34 61 %

Algorithm 0x6C 50 28 10 36 41 60 %

Another result of the analysis is that only 144 of the 256 algorithms are real
two-state algorithms, where both states are reached or used. Before simulation
an algorithm can formally check the bit pattern if it is a real two-state algorithm
or if it is trivial. By this technique the simulation time was significantly reduced.
Only 19 of the 144 algorithms allow the creature to cross 42 to 61 % of the empty
cells. Many of the algorithms yield bad or unacceptable results mainly because

Optimal Behavior of a Moving Creature in the Cellular Automata Model 135

they cyclically cross the same cells in a loop without any improvement after
having visited a certain number of cells.

Four-State Algorithms. As expected the four-state algorithms lead to better
results compared to two-state algorithms. The algorithms with four states, one
input and one output can be represented by a 24 bit table, meaning that 224

different algorithm have to be checked. The COI is 24.
The five best algorithms found are:

– A4: Algorithm 0x0E67D5 = 0R1L2R3R 1L3L1R2L
– B4: Algorithm 0x7E0A72 = 1L3L2R0R 2L0L3R1R
– C4: Algorithm 0x1EACCC = 0R3L2L1R 3R1L0L2R
– D4: Algorithm 0x1EA8F1 = 0R3L2L1R 2R1L3R0L
– E4: Algorithm 0x95EDD4 = 2R2L1L3R 3R3L1R2R

For each algorithm a number of equivalent algorithms were found, which
only differ by the state encoding. However, the initial state is always state 0.
The state graphs for the algorithms A4 and B4 are shown in fig. 4.

Algorithm A4 is not able to reach all cells of the configuration 2 and 3. Algo-
rithm B4 is not able to reach all cells of the configuration 4, even if the number of
generations (computation steps in the CA model) is very high (tested for 40 000).
Algorithms C4 and D4 are not able to reach all cells of the configuration 2 and
4. Algorithm E4 is not able to reach all cells of the configuration 1, 2, 3, and 4.
Only the algorithm B is able to reach all cells of the empty configuration 2 of
size 8× 8.

0

3

Lm

R

LmLm

2

1

L

R

R
Rm

0

2

Lm

R

RmLm

3

1

L

L

R

Rm

Algorithm A4 Algorithm B4

Fig. 4. The best four-state algorithms. Dotted line: creature cannot move. Continuous
line: creature can move

Note that the performance of the algorithm depends on the starting position
and starting direction of the creature, the size of the field and on the number
and arrangement of the obstacles.

Another criterion for the performance of the algorithms is the speed, meaning
how fast the cells are crossed. Figure 5a shows for the first configuration with
many scattered obstacles that the five algorithms differ in their speed. Algorithm
E4 is the fastest, but it is not able to cross all cells. Algorithm B4 is slower than
E4, but it can cross all cells. The other algorithms are even slower and cannot
cross all cells.

136 M. Halbach and R. Hoffmann

Table 2. Four-state Algorithms

crossed cells config. 1 config. 2 config. 3 config. 4 config. 5 crossed % av.

max 50 64 58 53 48

algorithm A4 50 60 56 53 48 97 %

algorithm B4 50 64 58 50 48 97 %

algorithm C4 50 60 58 48 48 96 %

algorithm D4 50 60 58 47 48 95 %

algorithm E4 48 60 47 48 48 91 %

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450

cr
os

se
d

ce
lls

generations

A4
B4
C4
D4

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450

cr
os

se
d

ce
lls

generations

A5
B5
C5
D5

Fig. 5. The speed of the algorithms for the first configuration of (a) 4 states and (b) 5
states

The optimizations needed minutes to days on a regular PC, depending on
the field size, number of initial configurations, and the capacity of intelligence.
In order to speed up the optimizations significantly, the problem was mapped
into programmable FPGA logic.

Five-State Algorithms. There are 1010 different algorithms with five states,
one input and one output. It would take a very long time to test all algorithms
by software. For example

n = 64 cells, 5 configurations, 200 simulation steps, on simulation step =
100ns
t = 64× 5× 200× 10−7 s× 1010 = 64× 106 s = 741 days.

Therefore we implemented the procedure in hardware using FPGA technol-
ogy. The best six algorithms are

– A5: Algorithm 0x4368021759 = 2R1L3R4R0R 1R0L3L2L4L
– B5: Algorithm 0x1852634790 = 0L4R2L1R3R 1L2R3L4L0R
– C5: Algorithm 0x1827435690 = 0L4R1R3L2R 1L2L3R4L0R
– D5: Algorithm 0x5126834790 = 2L0L1R3R4R 1L2R3L4L0R
– E5: Algorithm 0x4368021597 = 2R1L3R4R0R 1R0L2L4L3L
– F5: Algorithm 0x4379021685 = 2R1L3L4L0R 1R0L3R4R2L

All and only these six algorithms are able to cross all empty cells (100 %)
for all configurations. The speed of the first four algorithms is shown in fig. 5b.
Algorithm A5 is the fastest for all configurations on average. It needs 1164 steps

Optimal Behavior of a Moving Creature in the Cellular Automata Model 137

to reach all 273 empty cells for all configurations. (Mean step value 1164/273 =
4.26). Compared to the 4-state algorithms the 5-state algorithms are faster in
general.

L

Algorithm A5

1

0

R

Lm

3

2

L

R

4

Rm Lm
Lm

Lm

RR Rm

Algorithm B5

1

0

RLm

3

2 L

4

Rm

L

Lm

Lm

R

R

Fig. 6. The best five-state algorithms

L

Algorithm J6

1

0

Lm

3

2

L

R

4
Rm

LmRm

Lm

R 5 R

R

Lm

Fig. 7. One of the best six-state algorithms

The state-diagram (fig. 6) of algorithm A5 and B5 show a more complex
behavior compared to the 4-state algorithms which results in the better perfor-
mance.

In order to analyse the behavior of the creature, one could detect the cycles
or watch the behavior if the paths are always blocked or always free. So a graph
can be split into two graphs, one with dotted arcs and one with continues arcs.
For example algorithm A5 dotted represents the sequence (RRRRL*)* + L*,
where * means repetition. But by the moment we are not able to detect clear
relations between the graph’s structure and the behavior.

We are just investigating the 6-state algorithms. The best 6-state algorithm
(fig. 7) we detected needs only 959 generations to cross all cells of the five
configurations. This means a mean step value of 959/273 = 3.51 which is 21 %
faster compared to the best 5-state algorithm.

5 Some Details of the Hardware Implementations

The hardware for the cell field is described in the hardware description languages
Verilog and AHDL and synthesized into basic logic, which can be loaded into

138 M. Halbach and R. Hoffmann

a FPGA. We used the Altera chip Cyclone EP1C20F324C7 and the Quartus II
tools for the synthesis. The major part is the “CA-world” which calculates the
movement of the creature on the surface. In order to reduce the amount of logic,
the CA-world is divided into the two parts (surface and creature). The hardware
consists of the following parts.

1. Surface: An array of simple cells which are either of type Boarder or
Empty. Because of hardware limitations the environment is limited to the
size of 16× 16 in a first step.

2. Creature: One complex cell containing the position, the actual state, the
direction and the ability to turn left or right.

3. Evaluation: Counters and test logic which are used to control the simulation
and evaluation of the behavior.

4. Control Logic: The control logic starts, stops, and synchronizes the differ-
ent parallel emulations and allows communicating with the host computer.

5. Glue Logic: This part connects the other parts, for instance the connection
of 1. and 2. yields the CA model.

Two phases are needed for operation: The initialization and the calculation
phase. In the initialization phase obstacles are placed on the surface, the position
of the creature is defined and the evaluation logic is reset. In calculation mode
the creature moves around until the amount of crossed fields doesn’t increase for
a certain time.

Our example consists of five possible surfaces, so we can calculate them in
parallel. Each of the five “worlds” operates on the same algorithm. Whensoever
the behavior an one surface is too bad, the calculations on the other surfaces
don’t need to be continued. By this method the time of finding the best algorithm
can be reduced.

Algorithms where a state can only be reached but never left can be excluded
because they are not powerful enough. In the same way some algorithm repre-
sentations can be excluded without loosing results, e. g. one kind of permutation:
a state transition is only allowed if the difference between the destination and
start state numbers is less than 2.

The best results are preselected and transferred via USB to a computer
(host). For verification it is possible to simulate and observe a selected “world”
step by step using a direct connection to the hardware. For all these hardware
parts 8,423 logic cells were needed on the FPGA, which is around 41 % of the
chip capacity. The maximum clock frequency which can be achieved is 62.05 MHz
for this chip. Compared to a software solution on a PC the total speed-up is in
the range of many thousands which has been shown in another investigation [4].

6 Conclusion and Future Work

We implemented a learning moving creature both in software and in hardware.
The creature has the task to cross as many as possible empty cells using a local

Optimal Behavior of a Moving Creature in the Cellular Automata Model 139

algorithm. This algorithm can be seen as the brain of the creature which imple-
ments a certain behavior. A variable state machine was used for the hardware
and software implementation of the algorithm. The synthesized hardware allows
working massively parallel yielding to speed-ups of many thousands compared
to software simulation on a PC.

All 256 two-state algorithms, all 214 four-state algorithms and all 1010 five-
state algorithms have been investigated systematically. Only one four-state algo-
rithm was found, which is able to cross all cells of the 8× 8 empty configuration
2. Six five-state algorithms were found which are able to cross all empty cells of
all configurations. Also the speed of the five-state algorithms is higher than for
the four-state algorithms.

The goal is to discover better algorithms using a higher capacity of intelli-
gence. The capacity intelligence can be enhanced by increasing the number of
states, the number of inputs from the environment or the number and type of
outputs (actions).

There is a lot of interesting future work to do, like:

– Find efficient and robust behaviors for a higher capacity of intelligence.
– Analyze and evaluate the performance of the algorithms in relation to the

state graph.
– Speeding up the optimizing procedures.
– Use more complex worlds and tasks.
– Improve the hardware architectures.

References

1. S. Achasova, O. Bandman, V. Markova, and S. Piskunov. Parallel Substitution
Algorithm. World Scientific, P.O.BOX 128, Farrer Road, Singapore 9128, 1994.

2. M. Dascalu, E. Franti, and G. Stefan. Modeling production with artificial societies:
the emergence of social structure. In Cellular Automata Research Towards Industry,
1998.

3. J. M. Epstein and R. Axtell. Growing artificial societies – social science from the
bottom up. Brooking Institution Press, Washington D. C., 1996.

4. M. Halbach, W. Heenes, R. Hoffmann, and J. Tisje. Optimizing the Behavior of a
Moving Creature in Software and in Hardware. In ACRI 2004, Amsterdam, 2004.
Springer.

5. M. Halbach and R. Hoffmann. Implementing Cellular Automata in FPGA Logic.
In International Parallel & Distributed Processing Symposium (IPDPS), Workshop
on Massively Parallel Processing (WMPP), Santa Fe, NM, 2004. IEEE Computer
Society.

6. M. Halbach, R. Hoffmann, and P. Röder. FPGA Implementation of Cellular Au-
tomata Compared to Software Implementation. In PASA Workshop, ARCS, Augs-
burg, 2004.

7. C. Hochberger. CDL - Eine Sprache für die Zellularverarbeitung auf verschiedenen
Zielplattformen. PhD thesis, Darmstädter Dissertation D17, 1998.

8. C. Hochberger, R. Hoffmann, and S. Waldschmidt. CDL++ for the Description
of Moving Objects in Cellular Automata. In PaCT99, Par. Comp. Technologies,
LNCS 1662. Springer, 1999.

140 M. Halbach and R. Hoffmann

9. R. Hoffmann, B. Ulmann, K.-P. Völkmann, and S. Waldschmidt. A Stream Pro-
cessor Architecture Based on the Configurable CEPRA-S. In FPL 2000, LNCS
1896. Springer, 2000.

10. R. Hoffmann, K.-P. Völkmann, S. Waldschmidt, and W. Heenes. Global Cellular
Automata, A Flexible Parallel Model. In 6th International Conference on Parallel
Computing Technologies PaCT2001, Lecture Notes in Computer Science (LNCS
2127). Springer, 2001.

11. J. Kari. Infinite snake tiling problems. In DLT’2002, Developments in Language
Theory, Lecture Notes in Computer Science. Springer, 2002.

12. S. Levy. KL - Künstliches Leben aus dem Computer. Droemer Knaur, 1993.
translation from the English, ’Artificial Life’ (1992).

13. B. Mesot, E. Sanchez, C. A. Pena, and A. Perez-Uribe. SOS++: Finding Smart
Behaviors Using Learning and Evolution. In Standish, Abbass, and Bedau, editors,
Artificial Life VIII, page 264ff., 2002.

14. T. Ray. An Approach to the Synthesis of Life. In Artificial Life II, 1991.
15. A. Schönhage. Real-time simulation of multidimensional turing machines by stor-

age modification machines. In SIAM Journal on Computing, volume 9, Issue 3,
pages 490 – 508. August 1980.

Systolic Routing in an Optical Butterfly

Risto T. Honkanen

Department of Computer Science, University of Kuopio, P.O.Box 1627,
FIN-70211 Kuopio, Finland

rthonkan@cs.uku.fi

Abstract. In this paper we present an all-optical network architecture
and a systolic routing protocol for it. The r-dimensional optical butterfly
(OBF) network consists of r2r nodes and r2r+1 edges. Processors are
deployed at the level 0 (identical to level r) nodes of the network. Routing
is based on the use of cyclical control bit sequence and scheduling. The
systolic routing protocol ensures that no electro-optical conversion is
needed in the intermediate routing nodes and all the packets injected
into the routing machinery will reach their target without collisions. A
work-optimal routing of an h-relation is achieved with a reasonable size
of h.

1 Introduction

Optics offers a possibility to increase the bandwidth of intercommunication net-
works. Optical communication offers several advantages in comparison with its
electronic counterpart, for example, a possibility to use broader bandwidth and
insensitivity to external interferences. These advantages have been covered, e.g.,
by Saleh and Teich in their book [12].

Our work is motivated by another kind of communication problem, namely
the emulation of shared memory with distributed memory modules [6]. If a
parallel computation has enough parallel slackness, the implementation of shared
memory can be reduced to efficient routing of h-relation [14]. An h-relation is a
routing problem where each processor has at most h packets to send and it is
the target of at most h packets [1]. An implementation of an h-relation is said
to be work-optimal at cost c, if all the packets arrive at their targets in time
ch. A precondition for work-optimality is that h is greater than the diameter
φ of the network and the network can move Ω(nφ) packets in each step, where
n is the number of processors. Otherwise slackness cannot be used to ”hide”
diameter influenced latency [6]. For an r-dimensional optical butterfly (OBF)
having n = 2r processors the diameter φ = r fulfills this condition.

Butterfly networks are widely used in intercommunication machineries. There
are several reasons to the popularity of butterfly networks. Firstly, they have a
simple recursive structure. Secondly, in a r-dimensional butterfly any input p is
linked to any output p′ by a unique path of length r [7]. Most of implementations
of butterfly based networks use packet switching as the routing strategy [7,9,13].

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 141–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

142 R.T. Honkanen

A drawback of packet switching is that routing decisions must be done in elec-
tronic form. Liu and Gu have presented an all-optical implementation based on
wavelength-division multiplexing (WDM) in their paper [8]. An advantage of
their implementation is that electro-optic conversions are avoided. A disadvan-
tage is that a number of wavelengths and wavelength converters are needed to
realize connections [8].

In this work we present an all-optical network architecture and a systolic
routing protocol for it. The r-dimensional optical butterfly network consists of
r2r nodes and r2r+1 edges. Processors are deployed at the level 0 nodes of the
network. Routing nodes are connected to each other by optical links. In this
paper we present a novel packet routing protocol, called the systolic routing
protocol. Additionally, when a packet is injected into the routing machinery,
neither electro-optic conversions are needed during its path from source to tar-
get processor nor any collisions may happen between two distinct packets. An
r-dimensional OBF can route an h-relation in Θ(h) time, if h ∈ Θ(n log n).
Section 2 presents the internal structure of routing nodes and the structure of
OBF network. In Section 3 we introduce the systolic routing protocol. Section
4 presents the analysis of our construction. Section 5 sketches conclusions and
future work.

2 Optical Butterfly with Systolic Routers

We study on the r-dimensional structure of OBF of diameter φ = r and having
n = 2r processing nodes. We represent the structure of routing nodes in Section
2.1. Section 2.2 introduces the construction of OBF . Section 2.3 sketches the
feasibility of our construction.

2.1 Systolic Routers for OBF
Each routing node of OBF has two incoming and two outgoing links. A routing
node can be in two states. When a routing node routes incoming packets from
input links inup and indown to output links outdown and outup respectively, it is
said to be in invert state and when it routes incoming signals from input links
inup and indown to output links outup and outdown respectively, it is said to be
in push state. The two possible states of routing nodes are presented in Figure 1.

Indown

Inup

Indown

Inup

OutdownOutdown

OutupOutup

(a) Invert state (b) Push state

Fig. 1. Two possible states of routing nodes

Systolic Routing in an Optical Butterfly 143

The basic component of routing nodes is the electrically controlled all-optical
2×2 switch. Switches can be implemented by LiNbO3 technology [12]. The con-
struction of routing nodes ensures that signals never collide and routing of the
packets works correctly if we can arrange a situation that both incoming packets
never prefer the same output link. We will show that this kind of situation is
arrangeable.

2.2 Construction of Optical Butterfly

The r-dimensional butterfly consists of r2r nodes and r2r+1 edges. The nodes
correspond to pairs 〈w, i〉, where i is the level of the node (0 ≤ i ≤ r) and w is
an r-bit binary string denoting the row number of the node. Two nodes 〈w, i〉
and 〈w′, i′〉 are connected by an edge (optical link) if and only if i′ = i + 1, and
either [7]

i. w and w′ are identical (straight edges), or
ii. w and w′ differ in precisely the i′th bit (cross edges).

The construction of 3-dimensional OBF out of two 2-dimensional OBF ’s is
presented in Figure 2. In Figure 2, a circle indicates a processing node, a rounded
square indicates a routing node, and an arrow between two nodes indicates a
link between the nodes. Two attachable subnetworks are called blocks of the
network. Straight edges are always connecting the output outup from the i’th
level router to the input inup of the i +1’th level input (in the same block), and
cross edges are always connected from the output outdown of the i’th level router
to the input indown of the i + 1’th level input (adjacent block).

Level 0 Level 1 Level 2 Level 0 Level 1 Level 2 Level 3

P11

P10

P01

P00

P11

P10

P01

P00

100

P101

P110

P111

P

P000

P001

P010

P011

P100

P101

P110

P111

P000

P001

P010

P011

Fig. 2. Construction of 3-dimensional OBF out of two 2-dimensional OBF ’s with
relabeling of processing nodes and levels

144 R.T. Honkanen

Our construction has two characteristics. Firstly, straight edges are always
leading to the same block and cross edges are always leading to the adjacent block
of the (sub)butterfly. Secondly, treatment of packets can be arranged uniformly
at each router at the network because of uniform connections between routers.

Nodes 〈w, 0〉 and 〈w, r〉 are considered identical processing nodes. A useful
property of the r-dimensional butterfly is that for any source/destination pro-
cessing node pairs 〈ws, 0〉 and 〈wd, r〉 the packets can be routed by a unique path
of length r.

2.3 Feasibility of OBF for Using as a Systolic Router

The switching time of LiNbO3 switches lies in the range of 10–15 ps [12]. The
length of packet (lp) can be evaluated by equation lp = Np×vc

B×r , where Np is the
size of the packet in bits, vc = 0.3 m/ns is the speed of light in vacuum, r = 1.5
is the refraction index of fiber [12], and B is the link bandwidth. Assuming the
bandwidth to be B=100 Gb/s, the length of a bit in a fiber is Vc

B×r = 2 mm.
In order to estimate the feasibility of a 6-dimensional OBF (having 64 pro-

cessing nodes) let us assume the link bandwidth to be B = 100 Gb/s, and the
size of packets to be Np = 128 b. The corresponding length of a packet in a
fiber is lp � 256 mm, and the length of time slot is tp � 1.3 ns. Assuming the
length of clock cycle of processing nodes to be tcc = 1 ns (corresponding the
frequency of 1 GHz), it will take 1.3 clock cycles for a packet to travel between
two adjacent routing nodes. The overall amount of fibers is Lf � 200 m, and
the routing time of packet is tr � 8 clock cycles for each packet. We consider
the requested parameters to be reasonable and the architecture to be feasible to
construct in the near future.

3 Routing in Optical Butterfly

We develope a routing algorithm for OBF . In Section 3.1 we present properties
of routing information and transitions between blocks. Section 3.2 introduces
preprocessing phase. Preprocessing phase consists of determining of the control
sequence and determining the routing table that will control the routing. Section
3.3 introduces the routing algorithm for the optical butterfly.

3.1 Properties of Routing

Determining the Routing Information. Let a0a1 . . . ar−1 (ai ∈ {0, 1}) be a
bit sequence indicating the edges used by a packet on its path from the source
to the target in an r-dimensional OBF . The value 1 in a bit position ak in-
dicates that at level k the packet should be routed from router on level k to
level k + 1 using cross edge leading to the adjacent block. Correspondingly, if
ak = 0 the packet should be routed from router on level k to level k + 1 using
the straight edge leading to the same block. Clearly, we can construct an r-ary
routing bit sequence for any source/destination pair so that it leads correctly the

Systolic Routing in an Optical Butterfly 145

...
...

Same blocks

d

Adjacent block, incoming packet

Adjacent block, outgoing packet

a

b

c

.
.

.

Fig. 3. Example of transitions between blocks

packet through the OBF . To notice this, let us assume that in a bit sequence
a0a1 . . . ak . . . ar−1, the k’th bit stands for the edge leading to the wrong subnet-
work. We just substitute the initial bit sequence by a0a1 . . . āk . . . ar−1, where
āk is the complement of ak.

The routing information for packets can be evaluated by the bitwise XOR-
operation ⊕. For example, if processor P011 has a packet destined to processor
P111, the routing information can be expressed as 011⊕111 = 100. The meaning
of the information is that the packet from P011 to P111 must be routed from the
sender to the 1’st level router using cross edge, from 1’st level router to 2’nd
level router using straight edge, and from 2’nd level router to destination using
straight edge.

Determining Transitions Between Blocks. An r-dimensional OBF has
r − 1 levels of routers. According to the recursive contruction of OBF and our
definition every routing node at level r′ is connected to two subnetworks of
dimension r− r′− 1 by two outgoing links. We call these subnetworks as blocks.
Additionally it is a target of two incoming links from two subnetworks (blocks)
whose dimension is r− r′ + 1, except routing nodes at level 1 that are targets of
processors. Figure 3 clarifies the idea of blocks.

Routers can be considered to be an interface between blocks. Let us assume
that a packet has bits . . . 10 . . . in its (i− 1)’th and i’th bit positions of routing
information. Router responsible to route this packet (at the i’th level) receives
the packet from adjacent block into its indown input and it should route the
packet to the same block of the OBF . According to our construction the router
should be in invert state. Correspondence between two-bit routing information,
transitions between blocks, and required state of router is presented in Table 1.

Because all the routers have two incoming and two outgoing links, each router
can route two packets at the same time, if the packets do not prefer the same

146 R.T. Honkanen

Table 1. Correspondence between two-bit routing information, transitions between
blocks, and required state of router

Routing information Transition Required state

00 Same → Same Push
01 Same → Adjacent Invert
10 Adjacent → Same Invert
11 Adjacent → Adjacent Push

outgoing link. According to Table 1 this is fulfilled if the incoming packets have
either 00 and 11 or 01 and 10 in their (i− 1)’th and i’th bit position of routing
information when they are reaching a router at level i. Clearly we can see that
using these two states it is possible to route any combination of transitions
between blocks. Precondition of correct routing is that arrival of packets and the
state of router are synchronized correctly.

The transition information for packets can be evaluated by the bitwise XOR-
operation ⊕. Let w = s ⊕ d denote the routing information of a packet from
processor Ps to Pd and wj denote the value at the bit position j of the routing
information. We are able to determine a unique transition bit sequence τ by
τj = wj ⊕ wj+1, j = 0 . . . r − 1.

3.2 Initialization Phase

In our contruction injected packets have no routing information. When a packet
arrives a routing node it is routed into an adjacent or the same block according
to the state of the router. Anyway we are able to arrange a control system so
that every packet injected into the OBF reaches its target. We will use a syclical
control bit sequence and timing of injections of packets.

Determining the Control Sequence. An r-dimensional OBF has r levels
of routing nodes. Packet routing in an r-dimensional OBF can be implemented
by constructing a long control bit sequence s0s1s2 . . ., applying at time step t
the state corresponding to the value of bit position st to all the routing nodes
of the OBF , and synchronizing injections of packets so that they reach every
routing node in the correct state. Precondition of all-to-all routing is that the bit
sequence includes (cyclically) all bit sequences of l = r−1 bits. A naive solution
would be to construct the control bit sequence of all l-ary bit combinations. The
length of control cycle would be l2l. The control sequence can be reduced to
T = 2l by using de Bruijn sequences [3].

A de Bruijn sequence (in alphabet A = {′,∞}) of length 2l is a sequence
of 2l bits in which every subsequence of l = r − 1 bits appears once, including
wraparound [7]. For l = 4, for example, ξ = 0000111101100101 is a de Bruijn
sequence applicable for our purpose. All sixteen 4-bit sequences occur exactly
once as subsequence of ξ.

Fredricksen has presented an algorithm to construct a de Bruijn sequence [2].
The algorithm is Prefer one and it can be presented as follows [2]:

Systolic Routing in an Optical Butterfly 147

Algorithm Prefer one
1: Write l = r zeros;
2: for the kth bit of the sequence, k > l, write a one;

if the newly formed l-tuple has not previously appeared in
the sequence then k := k + 1

else
3: for the kth bit of the sequence, write a zero;

if the newly formed l-tuple has not previously appeared in
the sequence then k := k + 1 and go to step 2

else stop;

Bit positions of ξ present states of routers of OBF . Let ξm denote the value
of de Bruijn sequence at m’th bit position. At each time step t all the routers are
set in push state if ξt mod ‖ξ‖ = 0, where ‖ξ‖ is the length of de Bruijn sequence,
and in invert states otherwise. Determining of the control sequence is necessary
to do only once at the initialization phase of the OBF .

Determining the Routing Table. The optical butterfly has a number of
properties. Firstly, structure of routers and connections between them are uni-
form. Secondly, it is possible to determine a unique routing bit sequence for any
packet from a source Ps to the destination Pd for any pair (s, d). Thirdly, de-
termination of unique transitions between blocks is possible as well because of
uniformness of the construction of the OBF and uniqueness of the routing bit
sequences. Fourthly, the OBF is controlled by the static control bit sequence ξ.
For these reasons we are able to determine a routing table for every connections
at the initialization phase.

Let us consider an r-ary OBF having p = 2r processors. For this construction
the length of routing bit sequence is ‖w‖ = r, the length of transition bit sequence
is ‖τ‖ = ‖w‖ − 1 = r − 1, and the length of control sequence is ‖ξ‖ = 2r−1.
A packet having w0 = 0 is routed correctly if it is injected into output link
outup leading to the same block and during the next r − 1 time steps stands
τ t = ξt mod ‖ξ‖, t = 0 . . . r − 2. At the same time the sending processor can
inject another packet into the output link outdown for which w0 = 1 and τ t =
ξt mod ‖ξ‖, t = 0 . . . r− 2 during the next r− 1 time steps. For these two packets
destined to processors d and d′ stand di = d̄′i, j = 0 . . . r − 1, i.e., d′ is the
complement of d.

At the initialization phase every processor Pi determines a routing table R
having ‖ξ‖ = 2r−1 rows. Let Ri denote the value of i’th row of the routing table.
The algorithm determining routing table is Routing table and it can be presented
as follows:
Algorithm Routing table

1: i = 0;
2: repeat

In the i’th position of routing table R write the index
value of destination processor for which w0 = 0 and
τ t = ξi+t+1 mod ‖ξ‖, t = 0 . . . r − 2; i := i + 1;

3: until i = 2r−1 − 1;

148 R.T. Honkanen

Algorithm Routing table is necessary to do only once at the initialization
phase of the OBF .

3.3 Routing Algorithm for the Optical Butterfly

At the initialization phase each processor determines the control sequence and
the routing table. This must be done when the system is set up. At the beginning
of routing each processor of the OBF has a number of packets to send. In the
preprocessing phase each processor Ps inserts packets destined to processor Pd

into sending buffer B(s,d).
At each time step t each processor s picks up a packet from sending buffer

B(s,d′), where d′ = Rt mod ‖ξ‖ is the value of (t mod ‖ξ‖)’th position in the rout-
ing table. The packet is injected into the outgoing link outup leading to the same
block. A packet from sending buffer d̄′ is picked up as well and injected into the
outgoing link outdown.

4 Analysis of Systolic Routing

In preprocessing phase, each of the h packets of a processor Pi are inserted
into sending buffers according to their target. Clearly, all of the packets have
been routed after time O(Tn), where T is the maximum size of all buffers.
According to Mitzenmacher et al. [10], supposing that we throw n balls into
n bins with each ball choosing a bin independently and uniformly at random,
then the maximum load is approximately log n/ log log n with high probability1.
Maximum load means the largest number of balls in any bin. Correspondingly,
if we have n packets to send and n sending buffers during a simulation step,
then the maximum load of sending buffers is approximately logn/ log log n whp.
The overall routing time of those packets is n log n/ log log n + Θ(1) that is not
work-optimal according to the definition of work-optimality.

If the size of h-relation is enlarged to h ≥ n log n, the maximum load is
Θ(h/n) [11]. Assuming that h = n log n the maximum load is Θ(log n) and
the corresponding routing time is Θ(n log n). A work-optimal result is achieved
according to the definition of work-optimality.

Routing h packets in time Θ(h) implies work-optimality. We ran some ex-
periments to get an idea about the cost. We ran 5 simulation rounds for each
occurrence using a visualizator programmed with Java programming language
[4]. Packets were randomly put into output buffers and the average value of the
routing time over all the 5 simulation rounds were evaluated. The average cost
was evaluated using equation cave = tr

h , where tr is the average routing time.
Figure 4 gives support to the idea that h does not need to be extremely high to
get a reasonable routing cost.

1 We use whp, with high probability to mean with probability at least 1−O(1/nα) for
some constant α.

Systolic Routing in an Optical Butterfly 149

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

C
os

t [
tim

e
sl

ot
s]

Size of h-relation

Routing Costs in Systolic Routing

(1)
(2)
(3)

Fig. 4. Routing costs, when the size of h-relation varies. (1) n = 4, (2) n = 8, and (3)
n = 16

5 Conclusions and Future Work

We have presented the systolic routing protocol for optical butterfly. No electro-
optical conversion is needed during the transfer and all the packets injected into
the routing machinery are guaranteed to reach their destination. We believe that
the simple structure presented and the systolic routing protocol are useful and
realistic and offer work-optimal routing of h-relation if h ∈ Θ(n log n).

An advantage of our construction is that the overall number of links is
Θ(n log n). Honkanen presented the systolic routing protocol for Sparse Opti-
cal Torus (SOT) is his paper [5]. For SOT , the number of links is Θ(n2).

However, a drawbacks arise, when the systems are scaled up. Putting M
elements in the physical space requires at least a volume of size Θ(3

√
M) [15,16].

The length of wires between routing nodes increase with respect to the physical
space required.

References

1. Adler, M., Byers, J.W., Karp, R.M.: Scheduling Parallel Communication: The h-
relation Problem. Proceedings of Mathematical Foundation of Computer Science
(MFCS). Prague Czech Republic (1995) 1–20

2. Fredricksen, H.: A Survey of Full Length Nonlinear Shift Register Cycle Algo-
rithms. SIAM Review 24,2 (1982) 195–221

3. Golomb, S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills Califor-
nia (1982)

4. Haikarainen, T.: Visualisator for OBF network. Special project, University of Kuo-
pio, Kuopio. URL: http://www.cs.uku.fi/∼rthonkan/OBF/ (March 30, 2005)

150 R.T. Honkanen

5. Honkanen, R.T.: Systolic Routing in Sparse Optical Torus. Proceedings of the
8th Symposium on Programming Languages and Programming Tools (SPLST’03).
Kuopio Finland (2003) 14–20

6. Honkanen, R., Leppänen, V., Penttonen M.: Hot-Potato routing Algorithms for
Sparse Optical Torus. Proceedings of the 2001 ICPP Workshops. Valencia Spain
(2001) 302–307

7. Leighton, F.T.: Introduction to parallel algorithms and architecture: arrays, trees,
hypercubes. Morgan Kaufmann Publishers Inc., California (1992)

8. Liu, X., Gu, Q.-P.: Multicasts on WDM All-Optical Butterfly Networks. Journal
of Information Science and Engineering 18 (2002) 1049–1058

9. Maggs, B.M., Sitaraman, R.K.: Simple Algorithms for Routing on Butterfly Net-
works with Bounded Queues. Siam J. Comput. 28,3 (1999) 984–1003

10. Mitzenmacher, M., Richa, A.W., Sitaraman, R.: To appear in: Handbook of Ran-
domized Algorithm. URL: http://www.eecs.harvard.edu/∼michaelm/ (June 24,
2002)

11. Raab, M., Steger, A.: ”Balls into Bins”—A Simple and Tight Analysis. Proceed-
ings of 2nd Workshop on Randomize and Approximation Techniques on Computer
Science (RANDOM’98). Barcelona Spain (1998) 159–170

12. Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. John Wiley & Sons Inc.,
New York (1991)

13. Upfal, E., Felperin, S., Snir, M.: Randomized Routing with Shorter Paths. IEEE
Transactions on Parallel and Distributed Systems 7,4 (1996) 356–362

14. Valiant L.G.: General Purpose Parallel Architectures. In Algorithms and Complex-
ity. Handbook of Theoretical Computer Science vol. A (1990) 943–971

15. Vitányi P.B.M., 1988: Locality, Communication, and Interconnect Length in Mul-
ticomputers. SIAM Journal of Computing 17,4 (1988) 659–672

16. Vitányi P.B.M., 1994: Multiprocessor Architectures and Physical Law. Proceed-
ings of 2nd Workshop on Physics and Computation (PhysComp’94). Dallas Texas
(1994) 24–29

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 151 – 158, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Feasibility of the Circularly Connected
Analog CNN Cell Array-Based Viterbi Decoder

Hongrak Son1, Hyunjung Kim2, Hyongsuk Kim2, and Kil To Chong2

1 Communicatin and Network Lab. Samsung Advance Institute of Technology,
Yongin, Repulbic of Korea

2 Division of Electronics and Information Engineering, Chonbuk National University,
561-756, Chonju, Republic of Korea

hskim@chobuk.ac.kr

Abstract. The feasibility of the high speed Viterbi decoder with a circularly
connected 2-dimensional analog CNN cell array has been investigated. In the
previous study, the CNN-based analog Viterbi decoder was reported, in which a
part of the trellis diagram of the convolutional coder is designed with analog
circuit-based cells and connections. The circuits of the trellis diagram are
connected circularly, forming a cylindrical shape so that the cells of the last
stage are connected to those of the first stage. In this study, the performance of
the CNN-based analog Viterbi decoder circuits have been measured through
circuit simulations and its hardware feasibility has been investigated with two
different kinds of tests such as the worst-case simulation and the Monte Carlo
analysis. Results of such simulations are included.

1 Introduction

The Viterbi decoder [1][2] is the convolutional code decoder which is widely used for
error correction in numerous high-speed data communication areas. The decoder is a
simple model of dynamic programming [3], performing efficient data correction by
utilizing the most likely path-finding on the trellis diagram. One weakness is the
requirement of a heavy computation load.

There were approaches to fulfill such computational requirement utilizes digital
technology [4] where a one-dimensional array of computational units for one stage is
implemented into circuits. The trace-back requirement for finding the path with the
minimum error forces the circuits to employ the large size of path memory and
additional circuitry. Also, the high speed A/D converter which consumes a lot of
power is required in such a digital Viterbi decoder. Different approach alleviating the
problems in the digital Viterbi decoder is the analog Viterbi decoder [3] in which the
digital processor for each node is replaced with an analog processing unit. However, it
is not freed from the requirement of the path memory and trace-back procedure.

The Cellular Neural/Nonlinear Networks by Chua et [4][5] is the technology of
full parallelism employing massive processing array. Since the speed of the CNN
processing is potentially very high, its application to the Viterbi decoder is expected
to be a good technical combination. The decoding structure of the fully parallel

152 H. Son et al.

Viterbi decoder in which the infinitively expanding trellis diagram is implemented
with the circularly connected cell array was reported [8]. The nodes of the trellis
diagram are devised with the cells of the Cellular Neural Network (CNN). To test the
feasibility of the structure, diverse simulations have been done such as the worst case
simulations and the Monte Carlo analysis. The results of such study is reported in this
paper.

2 Operational Principle of the Proposed Viterbi Decoder

The principle of the Viterbi decoder is explained with the operation of trellis diagram
as in Figure 1 where vertical and horizontal locations are called states and stages,
respectively. Each branch between the states contains symbol error for a data bit.
Each node of the trellis diagram performs (1) to accumulate minimum error as in the
operation of dynamic programming [3].

Ei,j = min { Ek,l + eij,kl, (k,l) ∈ S} (1))

where Ek,l is the minimum total error from the start node to the node (k, l) and eij,kl is a
symbol error for a data bit assigned on the branch between the two nodes (i, j) and (k,
l). Also, S is a set of the cells in the neighbor of the cell (i,j), and min is the function
of minimum. Since a greater number of states allows for better error correcting
performance, the conventional Viterbi decoder has a heavy computational burden due
to the loads of the nonlinear processes at many nodes on one hand and the optimal
path finding operation on the trellis diagram on the other hand.

Fig. 1. An example of trellis diagram

The CNN is inherently the parallel processing structure with massive parallelism.
Since the CNN is potentially high in processing speed due to its massive parallelism,
its application to Viterbi decoding process can be expected to produce a great
performance: a cell in CNN acts as a node on the trellis diagram. One problem that
has arisen is the difficulty of hardware implementation since the trellis diagram
expands infinitively as the data are received continuously. The idea proposed in this
study is that the finite length of the circularly connected CNN as shown in Figure 2
performs for the infinitively expanding trellis diagram. Since such 2D networks are

Feasibility of the Circularly Connected Analog CNN Cell Array-Based Viterbi Decoder 153

Fig. 2. Proposed CNN-based Viterbi decoder with cylindrical connection to perform the
operation of trellis diagram

configured to have a cylindrical shape, the decoding is performed continuously
through the reference value propagation around the networks. The identification
whether a branch passes the optimal path or not is performed by adding a negative
triggering pulse to the branch and checking the alteration level of the output stage.
The values appear at the output stage are influenced only when the branch on the
optimal path is triggered. In this processing structure, each CNN cell is implemented
with analog circuits. Therefore, the A/D converter is not required and quantization
error does not occur. Also, the parallel analog structure of the proposed Viterbi
decoder allows the decoding speed to be very high, and the trigger-based decoding
mechanism does not require the path memory and circuits for the trace. The details of
the operation and its structure are included in [8].

3 CNN Cell Circuits

In the cylindrical shape of the proposed Viterbi decoder, each node has partial
connections since the error flows and accumulates only in the rotational direction. The
cell structure of the proposed CNN is unsymmetrical as in Figure 3(b) in contrast to
symmetrical in the ordinary cell as in Figure 3(a). In networks with such connections,
information flows in one direction, while flowing out to other directions. Since the
computation (1) includes min operation, its implementation with electronic circuits is
complicated. Introducing a big reference value Iref and with some arrangement, (1)
could be expressed with max circuits which are simpler circuits than min as in (2).

, , ,max{ ; (,) (,)}i j k l i jy y E k l i j= − ∈S (2)

where ,k ly is defined as

, ,k l ref k ly I E= − . (3)

The circuits to compute (2) or the nonlinear cell function in Figure 3(b) can be
implemented with the current mode circuits as in Figure 4. Let u(i,j) be the input of

154 H. Son et al.

u(i,j)

y(i,j)

From 8
neighboring

cells

To
neighbor

cells

u(i,j)

f(x(i,j))
To

neighbor
cells

From 8
neighboring

cells

From some of
neighbor cells

To some of
neighbor cells

y(i,j)

f(x(i,j))

rij,kl

eij,kl

 (a) (b)

Fig. 3. Comparison of CNN cell structures (a) ordinary CNN cell (b) proposed CNN cell

Fig. 4. Core circuits of a CNN cell for the proposed Viterbi decoder

the cell at the i th state of the j th stage on the trellis diagram. Transistors at the

center of the circuits compose the max function, where transistors Mij,1, Mij,2, Mij,3

make an input terminal of the current mode max circuit at the cell (i,j). The transistor
Mij,c is a common transistor for the max operation at the cell (,)i j . For example, the

transistors Mij,1, Mij,2, Mij,3 are for the input ()u ij and the transistors Mkl,1, Mkl,2, Mkl,3

are for the input r(ij,kl). The circuits choose the bigger one between u(ij) and r(ij,kl)
where r(ij,kl) is the difference between y(kl) and e(ij,kl). Such subtraction is
performed simply by parallel connection of a current mirror which drains the current
corresponding to e(ij,kl) out of y(kl) as shown at the left side of the Figure 4. The
output of the circuits is obtained at a terminal yij of the current mirror Mij,01 and Mij,02.
Such input and output terminals correspond to those in the cell structure of Figure
3(b).

Feasibility of the Circularly Connected Analog CNN Cell Array-Based Viterbi Decoder 155

Figure 5 shows the complete circuits of a cell including the subsidiary blocks. The
voltage signals of the input code symbol and the branch code symbol are converted
into the corresponding currents with V-to-I converting circuits. Such circuits are at the

left most block divided by the dotted line, where capV and brV are the input symbol

and the reference branch code symbol voltages, respectively. Also, the biasV is the

bias voltage. Note that the input code symbols are expressed as a quadrature signal
with multi-levels. The current mode signals of the V-to-I output are fed into the
difference and absolute computing circuits at the center block. The output of the
center block is provided as the branch metric error to the core circuits at the lower
part of the right most blocks. The upper part of the right most blocks is the V-to-I

circuits for the reference input signal refI . The sizes and types of the transistors are

listed in the Table 1.

Fig. 5. Complete circuits of a cell including the subsidiary blocks

4 Circuit Simulations

The circuits of the proposed Viterbi decoder in Figure 2 have been designed and its
performance has been tested with HSPICE simulation. The constraint length and
code rate of the proposed decoder are K=7(64 states) and R=1/2, respectively. The
simulation of the proposed Viterbi decoder has been done under the AGWN
environment. The technology and simulation model used is Hyundai 0.35um and
BSIM3v3 MOS model level 49.

156 H. Son et al.

Figure 6 shows the comparison of error correction performance between the
conventional and the proposed Viterbi decoder at various decoding speed. With the
same performance, the speed in the proposed decoding scheme is much superior to
the digital Viterbi decoder. Though the speed of a specially designed digital Viterbi
decoder can reach 91 Mbps, it requires about ten times more transistors than the
proposed decoder. Note that the speed of the ordinary sized digital Viterbi decoder is
less than 30 Mbps.

Fig. 6. Performance comparison between the digital Viterbi decoder and the proposed Viterbi
decoder

Fig. 7. Simulation results of the worst case models. F and S denote fast and slow options. The
first and the second characters in FF, FS, SF and SS are for the NMOS and the PMOS,
respectively. Performances of all the worst case models of the proposed circuits are better than
that of digital counter part with the half of decoding speed

Feasibility of the Circularly Connected Analog CNN Cell Array-Based Viterbi Decoder 157

The results of Figure 6 are the ones without considering the fabrication
inaccuracy. To estimate the decoding speed of the real chip, two different kinds of
tests have been done: the worst-case simulation and the Monte Carlo analysis.

In the worst-case simulation, the performance of the circuits has been tested
assuming the size (W/L) is normal, bigger or smaller than that of the nominal one for
NMOS and PMOS, respectively. The different kinds of size (W/L) deviation of the
transistors of NMOS and PM OS are chosen by the speed options of the chip in
HSPICE simulator. For example, a slow-fast (SF) option assumes that NMOS is
larger and the PMOS is smaller than that of the nominal ones, respectively. Therefore,
the option SS is the worst case where all the NMOS and PMOS are assumed to be
slow. Observing the error correction performance of the proposed Viterbi decoder for
4 different worst-case models at 180Mb/s in Figure 7, we see that the speed of the
proposed circuits to achieve the same performance of the digital counter part [20] is
two times faster than that of the digital one.

Fig. 8. Performance of the proposed Viterbi decoder when mismatching among transistors is
considered. The mismatching is allowed by deviating the MOS parameters of each transistor by
randomly generated amount

The circuit simulation to show the mismatching effect has also been done based

on the Monte Carlo analysis. For this end, tV and oxT values of all transistors are

varied randomly within the ranges of m% of their nominal values while the value of

158 H. Son et al.

m varies from 1 to 5. For example, if m is 2, the deviation of the parameters is the
randomly selected number within the range of [-2%, 2%] of its nominal value.

Therefore, tV and oxT values are assigned differently for every transistors and the

mismatching condition of the circuits is established. Figure 8 shows the performance
of the proposed Viterbi decoder at 180 Mbps, which is about two times higher speed
than that of the conventional digital counter part. As shown in the figure, the
performance of the Viterbi decoder degrades gracefully as the deviation increases.
However, it is still better than that of the digital counter part with one half speed until
3% of deviation.

5 Conclusion

A very high speed and low power Viterbi decoder employing a circularly connected
2-dimensional analog CNN cell array is proposed. The Viterbi decoder has been
designed with CMOS circuits using HSPICE and its decoding performance has been
reported. To estimate the decoding speed of the real chip, the designed circuits have
been analyzed with two different kinds of tests such as the worst-case simulation and
the Monte Carlo analysis. The estimated speed of the proposed circuit to achieve the
equivalent performance to the digital Viterbi decoders is two times faster than that of
the state-of-the art digital counter part consistently in all the analyses. Besides the
speed superiority, the proposed Viterbi decoder has several better features over the
conventional Viterbi decoders such as smaller amount of power consumption, shorter
latency, no path memory requirement. The number of transistors employed for this
circuit is also less than that of the digital counter part.

References

[1] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, pp. 260-269,
1967.

[2] G. D. Forney, JR. "The Viterbi algorithm," Proc. of the IEEE, vol. 61, No. 3, Mar. 1973.
[3] R. Bellman, Dynamic Programming, Princeton, NJ: Princeton Univ. Press, 1957.
[4] P. G. Gulak and T. Kailath, "Locally connected VLSI architecture for the Viterbi

algorithm," IEEE J. on selected areas in comm., vol. 6, pp. 527-537, Apr. 1988.
[5] M. H. Shakiba, D. A. Johns, and K. W. Martin, “BiCMOS circuits for analog Viterbi

decoders,” IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing,
pp.1527-1537, vol. 45, no. 12, Dec. 1998

[6] L. O. Chua and L. Yang, "Cellular neural networks: theory," IEEE Tr. on Circuits
Systems, vol.35, pp. 1257-1272, 1988.

[7] T. Roska and L. O. Chua, "The CNN universal machine: an analogic array computer",
IEEE Tr. on Circuits Systems II, CAS-40, pp. 163-173, 1993.

[8] H. Kim, H. Son, T. Roska, L. O. Chua, “Very high speed Viterbi decoder with circularly
connected analog CNN cell array,” IEEE International Symposium on Circuits and
Systems Vol.3, pp.III-97-100 Vol.3, 2004.

Associative Parallel Algorithm for Dynamic

Reconstruction of a Minimum Spanning Tree
After Deletion of a Vertex�

Anna Nepomniaschaya

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Division of Russian Academy of Sciences,

pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
anep@ssd.sscc.ru

Abstract. In this paper, we propose an associative parallel algorithm
for updating a minimum spanning tree when a vertex and all its in-
cident edges are deleted from the underlying graph. This algorithm is
represented as the corresponding procedure implemented on a model of
associative parallel systems of the SIMD type with vertical data process-
ing (the STAR–machine). We justify the correctness of this procedure
and evaluate its time complexity.

1 Introduction

Updating a minimum spanning tree (MST) after changes in the network topology
is a fundamental problem. Let G be an undirected graph with n vertices and
m edges and T be its MST. Let one of the following changes be performed in
G: deletion or insertion of an edge, or deletion or insertion of a vertex along
with its incident edges. We want to compute a new MST for the altered graph
by performing changes in the given T . In particular, such a problem arises in
computer networks that use broadcast or multicast routing protocols [2]. The
dynamic graph algorithms are designed to handle graph changes. They maintain
some property of a changing graph more efficiently than recomputation of the
entire graph from scratch with a static algorithm after every change.

We study the vertex deletion problem. Let us enumerate the main results ob-
tained for this task. Chin and Houck [1] proposed an O(n2) sequential algorithm
for reconstructing an MST after deletion of any vertex. Tsin [13] presented a pa-
rallel algorithm that updates an MST after a single vertex deletion. Tsin’s algo-
rithm uses n2/ log n CREW PRAM processors and runs in O(log n+ log2 δT (v))
time, where δT (v) is the tree degree of a deleted vertex v. Pawagi and Kaser [12]
have generalized Tsin’s algorithm to handle the k-vertex deletion problem. Das
and Loui [2] proposed two algorithms for reconstructing an MST after deletion
of any vertex. Their sequential algorithm takes O(m log n) time in general and
their parallel algorithm takes O(log2 n) time using m CREW PRAM processors.
� This work was supported in part by the Russian Foundation for Basic Research

under Grant 03-01-00399.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 159–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

160 A. Nepomniaschaya

In this paper, we first propose a simple and elegant associative parallel al-
gorithm for dynamic reconstructing an MST after deletion of a vertex and all
its incident edges from the underlying graph. Our model of computation (the
STAR–machine) simulates the run of associative (content addressable) parallel
systems of the SIMD type with bit–serial (vertical) processing and simple single–
bit processing elements (PEs). Such an architecture is best suited to solving
graph problems. By analogy with [9], our associative algorithm for the vertex
deletion problem uses a graph represented on the STAR–machine as a list of
triples (edge vertices and the weight) and a matrix of tree paths consisting of m
rows and n columns. Its every i-th column saves the tree path from the root v1

to vertex vi. In view of [10], initially the source MST and the corresponding ma-
trix of tree paths are known. Such a matrix is used both to select the connected
components obtained after deleting a vertex from the graph and to construct a
new MST. To achieve the dynamic reconstruction of an MST, we perform the
corresponding changes in the matrix of tree paths each time after finding a new
MST.

The associative parallel algorithm for updating the MST after a single vertex
deletion is represented on the STAR–machine as procedure DeleteVert whose
correctness is proved. We obtain that this procedure takes O(h log n) time, where
h is the number of vertices whose tree paths change after deletion of a vertex.
Following Foster [3], it is assumed that each elementary operation of the STAR–
machine (its microstep) takes one unit of time.

2 An Associative Parallel Machine Model

We define the model as an abstract STAR–machine of the SIMD type with verti-
cal processing and simple single–bit PEs. It consists of the following components:

– a sequential control unit (CU), where programs and scalar constants are
stored;

– an associative processing unit consisting of p single–bit PEs;
– a matrix memory for the associative processing unit.

The CU broadcasts an instruction to all PEs per unit time. All active PEs
execute it simultaneously while inactive PEs do not perform it. Activation of a
PE depends on data.

Input binary data are loaded in the matrix memory in the form of two–
dimensional tables, where each data item occupies an individual row and it is
updated by a dedicated PE. The rows are numbered from top to bottom and
the columns – from left to right.

The associative processing unit is represented as h vertical registers, each
consisting of p bits. A vertical register can be regarded as a one–column array
that maintains an entire column of a table. Bit columns of tabular data are
stored in the registers which perform the necessary bitwise operations.

The STAR–machine run is described by means of the language STAR [7]
being an extension of Pascal. To simulate data processing in the matrix memory,

Associative Parallel Algorithm for Dynamic Reconstruction of a MST 161

we use the data types slice and word for the bit column access and the bit row
access, respectively, and the type table for defining the tabular data. Assume
that any variable of the type slice consists of p components. For simplicity, let
us call “slice” any variable of the type slice.

Let X , Y be variables of the type slice and i be a variable of the type
integer. We use the following elementary operations:

SET(Y) sets all components of the slice Y to ′1′; CLR(Y) sets all components
of Y to ′0′; Y (i) selects the i-th component of Y ; FND(Y) returns the ordinal
number i of the first (the uppermost) component ′1′ of Y ; STEP(Y) returns
the same result as FND(Y) and then resets the first ′1′ found to ′0′; NUMB(Y)
returns the number of components ′1′ in the slice Y .

In the usual way we introduce predicates ZERO(Y) and SOME(Y) and the
bitwise Boolean operations X andY , X or Y , not Y , X xor Y .

The above–mentioned operations are also used for variables of the type word.
Let T be a variable of the type table. We use the following two operations:
ROW(i, T) returns the i-th row of the matrix T ; COL(i, T) returns its i-th

column.
Remark 1. Note that the STAR statements are defined in the same manner

as for Pascal. They will be used for presenting our procedures.
We will employ the following three basic procedures implemented on the

STAR–machine [8]. They use a global slice X to mark with ones the positions
of rows which will be processed. As shown in [8], these procedures run in O(k)
time each, where k is the number of columns in T .

The procedure MATCH(T, X, v, Z) defines in parallel positions of the given
matrix T rows which coincide with the given pattern v written in binary code. It
returns the slice Z, where Z(i) =′ 1′ if and only if ROW(i, T) = v and X(i) =′ 1′.

The procedure MIN(T, X, Z) defines in parallel positions of the given matrix
T rows, where minimum elements are located. It returns the slice Z, where
Z(i) =′ 1′ if and only if ROW(i, T) is the minimum element in T and X(i) =′ 1′.

The procedure TCOPY(T, h, F) writes the given matrix T , consisting of h
columns, into the resulting matrix F .

3 Preliminaries

Let G = (V, E) denote an undirected graph, where V is a set of vertices and E
is a set of edges. Let wt(e) denote the weight of the edge e. We assume that
V = {1, 2, . . . , n}, |V | = n, and |E| = m.

A path from v1 to vk in G is a sequence of the vertices v1, v2, . . . , vk, where
(vi, vi+1) ∈ E for 1 ≤ i < k.

A minimum spanning tree T = (V, E′) is a connected acyclic subgraph of G,
where E′ ⊆ E and the sum of weights of the corresponding edges is minimum.

Each edge e ∈ E − E′ is called a chord of G.
Let δT (v) denote the number of edges of T incident on v.
A connected component is a maximal connected subgraph of G.

162 A. Nepomniaschaya

2

7

4

6

6

4

3

7

1

2

3

4

5

6 1

2

3

4

5

6

2

4

4

3

7

Fig. 1. Graph G and its MST T

Let every edge (u, v) be matched with the triple (u, v, wt(u, v)). Note that
vertices and weights are written in binary code. In the STAR–machine memory,
a graph is represented as association of matrices left, right, and weight, where
every triple (u, v, wt(u, v)) occupies an individual row, and u ∈ left, v ∈ right,
and wt(u, v) ∈ weight. A minimum spanning tree is represented as a slice, where
positions of edges belonging to it are marked with ′1′.

We also use a matrix of tree paths M consisting of m rows and n columns.
Its every i-th column saves the tree path from the root v1 to vertex vi. Initially,
it is obtained along with the MST [10].

Let an edge from the i-th row of the graph representation be deleted from
the MST. Then the vertices marked with ′1′ in the i-th row of M form a separate
connected component.

We will illustrate the use of the matrix M by means of a graph given in
Figure 1. In the right part of this figure, solid edges form the MST T .

Let the edge (3, 5) be deleted from the MST. In Table 1, this edge is writ-
ten in the seventh row of the graph representation. Therefore vertices {4, 5, 6}
marked with ′1′ in the seventh row of the matrix M form a separate connected
component.

In [9], we proposed two associative parallel algorithms for the dynamic edge
update of an MST. They employ the matrix of tree paths M . After finding a
new MST, this matrix changes by means of the auxiliary procedure TreePaths.

Table 1. Representations of a graph, its MST, and the matrix of tree paths on the
STAR–machine

Table Slice

left right weight S T

1 001 010 010 1 1
2 001 011 111 1 0
3 010 011 100 1 1
4 010 100 110 1 0
5 011 100 110 1 0
6 100 101 011 1 1
7 011 101 100 1 1
8 100 110 111 1 1

Matrix M

1 2 3 4 5 6

1 0 1 1 1 1 1
2 0 0 0 0 0 0
3 0 0 1 1 1 1
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 1 0 1
7 0 0 0 1 1 1
8 0 0 0 0 0 1

Associative Parallel Algorithm for Dynamic Reconstruction of a MST 163

4 Associative Parallel Algorithm for Updating an MST
After Deletion of a Vertex

Let G − v be a graph after deleting the vertex v and all its incident edges. We
assume that this graph is connected and has an MST.

The algorithm consists of the following three stages.
At the first stage, we determine connected components obtained after deleting

vertex v and all its incident edges. Then we save vertices adjacent to vertex v.
At the second stage, we first determine positions of chords. Then positions of

edges incident on v are deleted from the current MST. Finally, we determine the
positions of chords being included in the new MST and save their endpoints.

At the third stage, we recompute the matrix of tree paths M .

4.1 Finding Connected Components

Let a vertex v and all its incident edges be deleted from the MST T . By definition
of a tree, there is such a unique edge, say γ, incident on v that vertex v is not
reachable from v1 after deleting this edge from the MST. Therefore the MST
is divided into two subtrees T1 and T2 such that T1 includes vertex v1 and T2

includes vertex v along with vertices reachable from v. Let γ be written in the
i-th row of the graph representation. Since the subtree T2 also includes edges
incident on v that will be deleted from the MST, one can determine the subtree
that includes vertex v1. It is precisely those vertices that are not marked with
′1′ in the i-th row of the matrix M .

Now, we propose an associative parallel algorithm for finding connected com-
ponents obtained after deleting vertex v from the MST. Knowing the given MST,
vertex v, and the matrix of tree paths M , it builds a matrix of connected com-
ponents comp, consisting of n bit columns and δT (v) rows. Its every row saves
a separate connected component. The algorithm performs the following steps.

Step 1. Save positions of edges from the MST incident on vertex v.
Update the selected edges using Steps 2–5.
Step 2. Select position i of the current edge from the MST incident on v.
Step 3. Save the i-th row of the matrix M using a variable, say w1.
Step 4. Verify whether vertex v belongs to the row w1.
The following two cases are possible.
Case 1. The vertex v is marked with ′1′ in w1. Then not w1 is written in the

current row of the matrix comp.
Case 2. The vertex v is marked with ′0′ in w1. Then w1 is written in the

current row of the matrix comp.
Step 5. Determine the vertex adjacent to vertex v and save its number in the

variable vdel.

Let in Figure 1 vertex 5 and its incident edges be deleted from the MST. Then
in view of the rule from Step 4, we determine connected components {4, 6} and
{1, 2, 3} using the sixth and the seventh rows of the matrix M , respectively.
Hence, the matrix comp will consist of the following two rows: 0 0 0 1 0 1 and
1 1 1 0 0 0. One can check that vdel = 0 0 1 1 0 0.

164 A. Nepomniaschaya

On the STAR–machine, the algorithm is realized by means of the procedure
Subtrees. It returns the following parameters: a matrix comp; a variable vdel to
save vertices adjacent to vertex v; a slice S to save positions of edges that remain
after deleting vertex v and all its incident edges; a slice Y to save positions of
edges from the MST incident on v.

Now, we propose the following procedure.

procedure Subtrees(left,right:table; code: table; M: table;
T: slice(left); v: integer; var S, Y : slice(left);
var vdel:word; var comp:table);

/* Here, S is the slice that saves positions of all graph edges,
T is the MST and v is the deleted vertex. */

var X: slice(left);
Z,Z1: slice(code);
i,j,k:integer;
node1,node2,w1,w2:word;

1. Begin SET(Z); j:= 0; CLR(vdel);
2. node1:=ROW(v,code);
3. MATCH(left,S,node1,X);
4. MATCH(right,S,node1,Y);
5. X:=X or Y;
/* The slice X saves positions of all graph edges incident on v. */
6. S:=S and (not X);
/* Positions of edges incident on v are deleted from the slice S. */
7. Y:=X and T;
/* The slice Y saves positions of edges from T incident on v. */
8. X:=Y;
9. while SOME(X) do

10. begin i:= STEP(X);
/* We select the position of the current deleted edge. */

11. w1:= ROW(i,M); j:= j+1;
12. if w1(v)= ’1’ then
/* The connected component includes vertex v. */

13. begin w2:= not w1;
14. ROW(j,comp):=w2;
15. end
16. else ROW(j,comp):=w1;
17. node2:=ROW(i,left);
18. if node1=node2 then node2:=ROW(i,right);
19. MATCH(code,Z,node2,Z1);
20. k:= FND(Z1);
/* The endpoint k of the deleted edge belongs to the connected

component located in the j-th row of the matrix comp. */
21. vdel(k):=’1’;
22. end;
23. End;

Associative Parallel Algorithm for Dynamic Reconstruction of a MST 165

Theorem 1. Let a graph G be given as association of the matrices left and right,
and the matrix code save binary representations of vertices. Let an MST be given
as a slice T and vertex v be deleted from it. Then the procedure Subtrees returns
the matrix comp and the above described variables vdel, S, and Y.

Proof. (Sketch) We prove this by induction on the number of edges k being
incident on vertex v in the MST.

Basis is checked for k = 1. After performing lines 1–6, the variable node1
saves the binary code of vertex v and positions of all its incident edges are
deleted from the global slice S. After performing lines 7–8, each of slices X and
Y saves position of a single edge, say γ, incident on v in the MST.

After performing lines 10–11, we first extract position i of γ and then we
save the i-th row of the matrix M using the variable w1. Since there is a single
edge incident on v in the MST, after deleting γ only vertex v is not reachable
from vertex v1. Therefore w1(v) =′ 1′. Hence, after performing lines 12–15,
we obtain a single connected component consisting of all vertices except v and
write it in the first row of the matrix comp. One can immediately verify that
after performing lines 17–21, the variable vdel saves the vertex of γ adjacent to
v. Since the slice X consists of zeros, the procedure terminates.

Step of induction. Let the assertion be true for MSTs that include no more
than k − 1 edges incident on v. We prove this for MSTs having k such edges.

Again, after performing lines 1–8, positions of all edges incident on v are
deleted from the slice S, and each of slices X and Y saves positions of k edges
from the MST incident on v.

By inductive assumption, after updating the first k−1 edges incident on v in
the MST, the first k− 1 connected components are written in the corresponding
rows of the matrix comp, the variable vdel saves k−1 vertices adjacent to vertex
v and the slice X saves position of a single edge incident on v. Since X is a non–
empty slice, we start with line 10. By analogy with the basis, after performing
lines 10–22, we first select the last connected component and write it in the k-th
row of the matrix comp. Then we include the endpoint of this edge adjacent to
v in vdel. Since the slice X consists of zeros, the procedure terminates. ��

Now, we enumerate two properties of the matrix comp and three rules being
used for constructing a new MST.

Property 1. ∀i
= j, ROW(i, comp)
=ROW(j, comp).

Property 2. There is a unique bit ′1′ in every column of the matrix comp.

Rule 1. To determine the connected component that includes the vertex having
number i, we need to select the i-th column of the matrix comp and to find the
position of ′1′.

Rule 2. To determine whether endpoints of a chord (i, j) belong to the same
connected component of the matrix comp, we need to find the row of comp that
includes vertex i (using Rule 1) and then check whether the j-th bit of this row
is equal to ′1′.

166 A. Nepomniaschaya

Rule 3. Let endpoints of a chord (i, j) belong to different connected components
from the matrix comp. Then a new connected component is obtained by includ-
ing the connected component containing its right endpoint (vertex j) into the
connected component containing its left endpoint (vertex i). Then we write zeros
in the matrix comp row, where the connected component including the vertex j
was written.

4.2 Finding a New MST

Here, we propose an associative parallel algorithm that constructs a new MST
from the current one after deletion of vertex v and all its incident edges. Know-
ing connected components obtained after deleting vertex v from the MST and
positions of edges incident on v, the algorithm determines a new MST, positions
of chords joining different connected components and their endpoints.

To obtain a new MST, we will simulate the run of Kruskal’s algorithm [6] on
the STAR–machine. Initially, this algorithm acts on δT (v) connected components
each being an MST on the corresponding graph induced by its vertices [1].

At every iteration when the current selected chord of the minimum weight
connects two different connected components, we unite them together with
this chord forming a single connected component which is also an MST on the
corresponding graph induced by its vertices.

The process continues until all connected components are united in a single
connected component.

Let δT (v) = q. Let us agree to denote by C(u) a connected component that
includes vertex u.

The associative parallel algorithm is performed as follows.

Step 1. Make a copy of the matrix comp, namely, comp1.
While q > 1, perform Steps 2–5.
Step 2. Find position i of the minimum weight chord. Then delete this chord

from further consideration.
Step 3. Determine both vertices of this chord. Let the chord (l, r) be written

in the i-th row of the graph representation.
Step 4. Determine the matrix comp1 row that contains vertex l.
Step 5. Check whether vertex r belongs to the same connected component.

The following two cases are possible.

Case 1. Both vertices belong to the same connected component. Then go to
Step 2.

Case 2. Both vertices belong to different connected components. Then include
the chord from the i-th row in the MST and in the slice Rep. Further, save
its endpoints l and r in the i-th row of the matrix endpoints and perform the
statement q := q− 1. Moreover, by means of Rule 3, determine a new connected
component that unites C(l) and C(r) and change the corresponding rows of the
matrix comp1.

Associative Parallel Algorithm for Dynamic Reconstruction of a MST 167

On the STAR–machine, this algorithm is realized by means of the procedure
NewMST. It returns the following parameters: a slice T to save the new MST;
a slice Rep to save positions of chords joining different connected components;
a matrix endpoints whose every i-th row saves both vertices of the chord from
the i-th row of the graph representation being included in the slice Rep.

Initially, the slice T saves the current MST and the slice Rep consists of zeros.
Let us present the following procedure.

procedure NewMST(left,right:table; weight:table; code:table;
comp: table; Y,S: slice(left); n: integer; var T,Rep:
slice(left); var endpoints:table);

var comp1:table;
X,NT: slice(left);
Z,Z1: slice(code);
F: slice(comp);
i,j,k,l,r,q:integer;
w1,w2,w3:word;

1. Begin SET(Z); CLR(Rep);
2. TCOPY(comp,n,comp1);
3. NT:=S and (not T);
/* The slice NT saves positions of chords. */
4. T:=T and (not Y);
/* We delete positions of edges incident on v from the slice T . */
5. q:=NUMB(Y);
6. while q>1 do
7. begin MIN(weight,NT,X);
8. i:=FND(X); NT(i):=’0’;
/* The position of the minimum weight chord is located

in the i-th row of the graph representation. */
9. w1:=ROW(i,left);

10. MATCH(code,Z,w1,Z1); l:=FND(Z1);
11. w1:=ROW(i,right);
12. MATCH(code,Z,w1,Z1); r:=FND(Z1);
/* Here, (l, r) is the edge (say γ) from the i-th row. */

13. F:=COL(l,comp1); j:=FND(F);
14. w2:=ROW(j,comp1);
/* The endpoint l of the edge γ belongs to the connected

component written in the j-th row of comp1. */
15. if w2(r)=’0’ then
/* The case when the endpoint r of γ doesn’t belong

to the same connected component. */
16. begin Rep(i):=’1’;
17. T(i):=’1’; CLR(w3);
18. w3(l):=’1’; w3(r):=’1’;
/* The variable w3 saves the edge (l, r). */

19. ROW(i,endpoints):=w3;

168 A. Nepomniaschaya

20. F:=COL(r,comp1); k:=FND(F);
21. w3:=ROW(k,comp1);
/* The endpoint r of γ belongs to the connected component

written in the k-th row of the matrix comp1. */
22. w2:=w2or w3;
/* Here, w2 saves the join of two connected components. */

23. ROW(j,comp1):=w2;
24. CLR(w3); ROW(k,comp1):=w3;
25. q:=q-1;
26. end;
27. end;
28. End;

Theorem 2. Let a graph G be given as a list of triples and the matrix code save
binary representations of vertices. Let a matrix comp save the selected connected
components, a slice Y save positions of edges incident on the deleted vertex, and
n be the number of graph vertices. Then the procedure NewMST returns the slices
T and Rep and the matrix endpoints described above.

Proof. (Sketch) We prove this by induction on the number of connected com-
ponents k obtained after performing the procedure Subtrees.

Basis is checked for k = 2. If there is a single connected component, the new
MST is obtained from the current MST by deleting a single edge incident on v.

After performing lines 1–3, the slice Rep consists of zeros, the matrix comp1
is a copy of the matrix comp, and the slice NT saves positions of chords. After
performing lines 4–5, positions of edges incident on v are deleted from the slice
T and q saves the number of edges incident on v in the MST. Since q = 2, we
fulfil the cycle from line 6.

Here, after performing lines 7–8, we determine position i of the minimum
weight chord, say γ, and exclude it from the slice NT . After performing lines
9–12, we find out that γ = (l, r).

After performing lines 13–15, using Rule 1, we first determine the connected
component C(l) that includes vertex l . Then by means of Rule 2, we verify
whether r belongs to C(l). We consider the following two cases:

Case 1. Let r /∈ C(l). Then after performing lines 16–19, we save position i
of γ both in the slice Rep and in the slice T . Moreover, we save this chord in the
i-th row of the matrix endpoints. On performing lines 20–25, we first determine
the connected component C(r). Then by means of Rule 3, we merge together
C(l) and C(r) and change the corresponding rows of the matrix comp1. Finally,
we perform the statement q := q − 1. Since q = 1, the procedure terminates.

Case 2. Let r ∈ C(l). Then we go to line 7 and select another chord of the
minimum weight because the previous chord was deleted from the slice NT .

It remains to show that the slice T saves positions of edges from the new
MST. Really, we have deleted from T the positions of two edges incident on v
(line 4) and have included the position of the minimum weight chord that links
two connected components (line 17).

Associative Parallel Algorithm for Dynamic Reconstruction of a MST 169

Step of induction. Let the assertion be true for MSTs having no more than
k − 1 connected components. We prove this for MSTs that include k connected
components. After performing lines 1–5, we obtain the matrix comp1 and update
slices Rep, NT , and T by analogy with the basis. Since q > 1, we perform the
cycle from line 6.

By inductive assumption, after selecting the first k−1 chords of the minimum
weight that link two different connected components, there is such a row in the
matrix comp1 that the union of k− 1 connected components is written. In view
of Rule 3, k − 2 rows of comp1 consist of zeros. Positions of these chords are
included both in the slice T and in the slice Rep, their endpoints are written in
the corresponding rows of the matrix endpoints and q = 2. Therefore we perform
line 6. Further we reason by analogy with the basis. ��

4.3 Recomputing Tree Paths

Let us explain the main idea of the associative parallel algorithm for recomputing
the matrix of tree paths M .

We first select the connected component w1 that includes root v1. Tree paths
for vertices from w1 do not change. Then we select the connected component w2

which is linked with w1 by means of a chord. After that, we determine new tree
paths for all vertices from w2 using the auxiliary procedure TreePaths. Further,
we unite w1 and w2 and obtain a new connected component w1.

The process is carried out until all connected components are included in w1.
The associative parallel algorithm for recomputing tree paths is realized as

procedure ChangePaths. It uses the following input parameters: matrices comp
and endpoints, and a slice Y described before. The procedure returns a slice
Rep, a variable vdel, and the recomputed matrix M .

Initially, the slice Rep saves the positions of chords being included in the new
MST, the variable vdel saves vertices adjacent to vertex v, and the matrix M
saves tree paths to all vertices of the source graph.

Really, the procedure NewMST does not change the matrix comp and vari-
ables vdel and Y obtained in the procedure Subtrees. Moreover, the matrix
endpoints and the slice Rep are obtained in the procedure NewMST. Note that
the procedures Subtrees and NewMST do not change the matrix M .

The associative parallel algorithm is performed as follows.

Step 1. Make a copy of the matrix M , namely M1, to save tree paths from
root v1 to all vertices of the source graph.

Step 2. In the matrix comp, select a connected component w1 that includes
root v1. Tree paths for vertices from w1 do not change.

While q > 1 1, perform Steps 3–8.
Step 3. In the matrix endpoints, select position i of a chord whose endpoint

k belongs to w1. Delete this chord from the slice Rep.
Step 4. Define another endpoint ins of this chord. Hence, we assume that the

chord (k, ins) is written in the i-th row of the matrix endpoints.

1 Here, q = δT (v).

170 A. Nepomniaschaya

Step 5. Select the connected component w2 that includes vertex ins. In w2,
determine vertex del being adjacent to the deleted vertex v. Delete vertex del
from the row vdel.

Step 6. By means of the matrix M1, determine both a new tree path W to
vertex ins and a slice P to save positions of tree edges that link the vertices ins
and del.

Step 7. By means of the procedure TreePaths, compute new tree paths for
all vertices from the connected component w2. Write down them in the corre-
sponding columns of the matrix M .

Step 8. Join the connected component w2 to the connected component w1.
Then perform the statement q := q − 1.

Now we propose the following procedure.

procedure ChangePaths(comp:table; endpoints:table;
Y: slice(left); n: integer; var Rep: slice(left);
var vdel:word; var M: table);

var M1: table;
i,j,j1,k,l,q,del,ins:integer;
X1,X2,P,W,Rep1:slice(left);
F: slice(comp);
w1,w2,w3:word;

1. Begin TCOPY(M,n,M1);
2. q:=NUMB(Y); Rep1:=Rep;
/* Here, q saves the number of connected components. */
3. F:=COL(1,comp); j:=FND(F);
4. w1:=ROW(j,comp);
/* Here, w1 saves the connected component that includes root v1. */
5. while q>1 do
6. begin i:=STEP(Rep1);
7. w2:=ROW(i,endpoints);
8. w3:=w1and w2;
9. while ZERO(w3) do

10. begin i:=STEP(Rep1);
11. w2:=ROW(i,endpoints);
12. w3:=w1and w2;
13. end;
/* We select the position of the edge that joins the connected

component having root v1 and another one. */
14. Rep(i):=’0’; Rep1:=Rep;
15. k:=FND(w3);
16. w2(k):=’0’; ins:=FND(w2);
/* The edge (k, ins) is located in the i-th row

of the matrix endpoints. */
17. F:=COL(ins,comp); j1:=FND(F);
/* Vertex ins belongs to the connected component written

in the j1-th row of the matrix comp. */

Associative Parallel Algorithm for Dynamic Reconstruction of a MST 171

18. w2:=ROW(j1,comp);
/* Here, w2 saves a connected component whose tree paths

are recomputed. */
19. w3:=w2and vdel;
20. del:=FND(w3); vdel(del):=’0’;
/* We determine endpoint of the deleted edge belonging

to the same connected component as vertex ins. */
21. W:=COL(k,M1); W(i):=’1’;
/* The slice W saves the new tree path to vertex ins. */

22. X1:=COL(ins,M1);
23. X2:=COL(del,M1);
24. P:=X1xor X2;
25. TreePaths(left,right,code,M1,ins,del,M,P,W,w2);
/* We have determined new tree paths for every vertex from w2. */

26. w1:=w1or w2;
27. q:=q-1;
28. end;
29. End;

Theorem 3. Let matrices comp and endpoints be obtained after deleting the
vertex v and all its incident edges from the given graph. Let Y save positions
of edges from the MST incident on v and n be the number of graph vertices.
Then the procedure ChangePaths returns the slice Rep, the variable vdel, and the
recomputed matrix of tree paths M.

Proof. (Sketch) We prove this theorem by induction on the number of connected
components obtained after performing the procedure Subtrees.

Basis is checked for k = 2. After performing lines 1–4, the slice Rep1 is a
copy of Rep, the matrix M1 saves paths to all vertices of the source graph, and
w1 is a connected component that includes vertex v1. Since q = 2, we perform
the cycle from line 5. Here, after performing lines 6–13, we select position i of
the chord included in the new MST whose endpoint belongs to w1. This can be
done because the matrix endpoints saves all chords included in the new MST.
After performing line 14, we first delete position of the selected chord from the
slice Rep and then perform Rep1 := Rep. After fulfilling lines 15–18, we first
determine endpoint k of the selected chord that belongs to w1. Then we define
its endpoint ins and the connected component w2 that includes it. Tree paths
for w2 will be recomputed. After performing lines 19–24, we determine other
parameters for the auxiliary procedure TreePaths.

Finally, after computing new tree paths for all vertices from w2, we join w2
to w1 and obtain a new connected component w1. Since q = 1 (line 27), the
procedure terminates.

Step of induction is proved as in Theorem 2. It should be noted that the
current connected component being joined to w1 is easily determined because
at any iteration we update slices Rep and Rep1 and the variable vdel. ��

172 A. Nepomniaschaya

Now, we present the procedure DeleteVert that implements the associative
paralel algorithm for updating an MST after deletion of a vertex.

procedure DeleteVert(left,right:table; weight:table;
code: table; n,v: integer; var endpoints:table;
var S,T,Rep:slice(left); var M: table);

var comp: table;
Y: slice(left);
vdel: word;

Begin
Subtrees(left,right,code,M,T,v,S,Y,vdel,comp);
NewMST(left,right,weight,code,comp,Y,S,n,T,Rep,endpoints);
ChangePaths(comp,endpoints,Y,n,Rep,vdel,M);

End;

Let us evaluate time complexity of the procedure DeleteVert. One can check
that the procedures Subtrees and NewMST take O(δT (v) log n) time each. The
procedure ChangePaths requires O(s log n) time, where s is the number of ver-
tices whose tree paths are recomputed. Let h = max{δT (v), s}. Then the proce-
dure DeleteVert takes O(h log n) time on the STAR–machine having no less than
m PEs. Note that the factor log n appears due to the use of the basic procedures
inside the cycle.

Now, we briefly compare our algorithm and the sequential algorithm Find
Node Replacements (FNR) by Das and Loui [2]. Let T − v be the graph after
deleting vertex v and its incident edges from T . Let R(v) be a set of edges such
that T − v + R(v) is the MST of G − v. Let F (v) be a component graph of v
whose vertices correspond to the connected components of T − v and its edges
correspond to nontree edges that are not incident to v and connect different
components of T − v. To determine R(v) for all v, the FNR algorithm simulates
Kruskal’s algorithm on each F (v). Note that adjacency lists of each F (v) are
determined by means of the parallel algorithm from [4] and the MSTs of each
F (v) are found using the parallel algorithm from [5]. Our algorithm determines
the connected components of T − v using the corresponding rows of the given
matrix of tree paths. Moreover, MSTs of these components are obtained auto-
matically due to the tabular data structures and the vertical data processing.
The FNR algorithm simulates Kruskal’s algorithm on a graph modified via star
transformation. Our algorithm offers an original approach to obtaining a simple
simulation of Kruskal’s algorithm on the STAR–machine.

5 Conclusions

We have proposed a simple and natural associative parallel algorithm for the
dynamic updating an MST after deletion of a vertex. It uses a matrix of tree
paths to easily determine both a tree path between any pair of vertices and the
connected components obtained after deleting a vertex along with its incident
edges. We have also proposed a simple and natural method to easily determine

Associative Parallel Algorithm for Dynamic Reconstruction of a MST 173

a new MST from the current MST by means of Kruskal’s algorithm. We have
obtained that the corresponding procedure DeleteVert takes O(h log n) time on
the STAR–machine having m PEs, where h = max{δT (v), s} and s is the number
of vertices whose tree paths are recomputed. Moreover, we have compared our
algorithm and the FNR algorithm by Das and Loui [2].

We are planning to implement our algorithm on the associative graph ma-
chine [11] that carries out both the bit–serial and the bit–parallel processing.

References

1. Chin, F., Houck, D.: Algorithms for Updating Minimum Spanning Trees. In: J. of
Computer and System Sciences, Vol. 16 (1978) 333–344

2. Das, B., Loui, M.C.: Reconstructing a Minimum Spanning Tree after Deletion of
Any Node. In: Algorithmica, Vol. 31 (2001) 530–547

3. Foster, C. C.: Content Addressable Parallel Processors. Van Nostrand Reinhold
Company, New York (1976)

4. Johnson, D.B., Metaxas, P.: Connected components in O(lg3/2 | V |) parallel time
for the CREW PRAM. In: J. Systems Sci., Vol. 54, No. 2 (1997) 227–242

5. Johnson, D.B., Metaxas, P.: A parallel algorithm for computing minimum spanning
trees. In: J. Algorithms, Vol. 19 (1995) 383–401

6. Kruskal, J. B.: On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. In: Proc. Amer. Math. Soc., Vol. 7 (1956) 48–50

7. Nepomniaschaya, A. S.: Language STAR for Associative and Parallel Computation
with Vertical Data Processing. In: Mirenkov, N.N. (ed.): Proc. of the Intern. Conf.
“Parallel Computing Technologies”. World Scientific, Singapure (1991) 258–265

8. Nepomniaschaya, A. S., Dvoskina, M. A.: A Simple Implementation of Dijkstra’s
Shortest Path Algorithm on Associative Parallel Processors. In: Fundamenta In-
formaticae, Vol. 43. IOS Press, Amsterdam (2000) 227-243

9. Nepomniaschaya, A. S.: Associative parallel algorithms for dynamic edge update of
minimum spanning trees. In: Malyshkin, V. (ed.): Parallel Computing Technolo-
gies. 7th Intern. Conference, PaCT 2003, Proceedings. Lecture Notes in Computer
Science, Vol. 2763. Springer–Verlag, Berlin Heidelberg New York (2003) 141–150

10. Nepomniaschaya, A. S.: A New Technique for Updating Tree Paths on Associa-
tive Parallel Processors. In: Bulletin of the Novosibirsk Computing Center, Series:
Computer Science, Issue: 21 (2004) 85-97

11. Nepomniaschaya, A. S., Kokosinski, Z.: Associative Graph Processor and its Pro-
perties. In: Proc. of the International Conference on Parallel Computing in Elec-
trical Engineering (PARELEC 2004), Dresden, Germany. IEEE Computer Society
Press (2004) 297-302

12. Pawagi, S., Kaser, O.: Optimal Parallel Algorithms for Multiple Updates of Mini-
mum Spanning Trees. In: Algorithmica, Vol. 9 (1993) 357–381

13. Tsin, Y.H.: On Handling Vertex Deletion in Updating Minimum Spanning Trees.
In: Information Processing Letters, Vol. 27, No. 4 (1988) 167–168

The Use of Vertical Processing Principle in

Parallel Image Processing on Conventional
MIMD Computers�

Evgeny V. Rusin

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch, Russian Academy of Sciences,

6 Acad. Lavrentiev Ave, Novosibirsk, 630090 Russia
rev@ooi.sscc.ru

Abstract. PLVIP, experimental library for parallel image processing,
designed and implemented in the Image Processing Laboratory of the
Institute of Computational Mathematics and Mathematical Geophysics
SB RAS, is described. The library is built on the principle of vertical pro-
cessing and is installed on two multiprocessor computers of the Siberian
Supercomputer Center, the 32-processor Linux cluster MVS–1000/M and
the 8-processor SMP server RM600–E30. Basic characteristics of the li-
brary (supported data formats, organization of computational process,
and implemented subprograms) and an example of its application are
considered.

1 Introduction

Enormous size of remote sensing data (information flows up to 128Mbps, single
image size of about 1GB, daily content of receive data up to 60GB) and the need
for its real-time interpretation (for example in problems of monitoring forest fires
and floods) require the high performance of the computers involved in processing.
Today it is obvious that the necessary performance cannot be reached by the
means of increasing the computer clock cycle alone, and parallel processing is
the only way to obtain the results within the required time frame.

Existing image processing systems belong, as a rule, to one of the following
three classes: multipurpose and highly optimized libraries for personal comput-
ers and workstations, such as Intel IPP [1] or open source library OpenCV [2];
programs for a single problem solution on multiprocessor computers; or yet more
specialized systems based on custom hardware. Unlike some other fields of infor-
matics that require a large amount of computations (solution of linear algebra
problems, building of high-performance data bases, etc.), basic image processing
systems for conventional multiprocessor computers do not exist today.

The present work describes an experimental library for parallel image pro-
cessing PLVIP designed and implemented in the Image Processing Laboratory
� Supported by Russian Academy of Sciences (integration project No. 13.14) and Rus-

sian Foundation for Basic Research (project No. 05-07-90057).

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 174–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Use of VP Principle in Parallel Image Processing 175

of the Institute of Computational Mathematics and Mathematical Geophysics
SB RAS. The principle of vertical processing was chosen as the algorithmic
base of the library, which provides effective processing of the arrays of short
data, for example halftone images with small color depth. The library is in-
stalled on two multiprocessor computers of the Siberian Supercomputer Center,
the 32-processor Linux cluster MVS–1000/M and the 8-processor SMP server
RM600–E30.

In the paper, after a brief description of the vertical processing method,
the basic principles of the building of the library PLVIP are considered: sup-
ported data formats, organization of computational process, and implemented
subprograms. Next, the way of optimization of the calculations based on vertical
processing is considered. The application of the created software is illustrated
by the example of the solution of the classic digital cartography problem, the
recovery of an elevation map from a given contours set. In the conclusion, the
author’s considerations about the further work direction are stated.

2 Vertical Processing

In 1970s, for the support of the solution of the problems permitting the mass in-
formation processing, including the image processing problems, specialized fine-
grained SIMD computers were created. This computers consisted of a very large
number (up to a hundred of thousands) of synchronously operating one-bit pro-
cessor elements with own memories and an interconnection network connecting
them [3]. The characteristic feature of SIMD computers was a vertical, or word-
parallel bit-serial, approach to data processing (vertical processing, VP) [4].

The VP principle is schematically shown in Fig. 1, which represents the ex-
ample of the processing of a data array by the traditional and the “vertical” way.
Unlike the traditional processing, when the elements of the array are loaded into

Fig. 1. Traditional (at left) and vertical (at right) approaches to data processing

176 E.V. Rusin

processor by turns, and a single element is processed as a whole, during VP the
same-named (i.e., of the same significance) bits of multiple elements are loaded
into processor together.

The set of the values of the same-named bits of all pixels of an image is
called a bit plane of the image. It is bit planes that are the handling units of the
vertical image processing (VIP); the value of a pixel is composed of the values
of the corresponding bits of image planes (Fig. 2).

The algorithmic basis of VIP is formed by the operations on bit planes:

– bitwise Boolean operations;
– shifts to the horizontal (X-shifts) and the vertical (Y-shifts) direction;
– calculation of a “mass” of a bit plane, i.e., of the number of the one bits in

it;
– checks on the presence of at least one 1 (or 0) bit in a bit plane and on the

equality of two bit planes.

The data model used in VP didn’t find an application out of specially de-
signed processors; in particular, the questions of the implementation of VIP
in conventional computers are still unexplored today. Meanwhile, there are the
following reasons to study these questions.

1. The performance of bit-serial computations grows with the decrease of the
size of an individual datum being processed; this allows making the pro-
cessing of arrays of short data more efficient, for example the processing of
halftone images with small color depth.

2. For VP, there are no limitations on the size of a single datum being processed;
this makes calculations with an arbitrary accuracy easy to perform.

3. The algorithmic basis of VIP can be effectively implemented on conventional
computers by the operations on machine words (bitwise Boolean operations
and shifts); present-day 64-bit microprocessors allow processing 64 pixels of
an image in parallel.

Fig. 2. A 16-color image A consists of four bit planes. The value of the pixel (8, 5) of

A is composed of the values of the corresponding bits of A planes

The Use of VP Principle in Parallel Image Processing 177

4. The intrinsic parallelism of VP allows using multiprocessor computers of the
traditional architecture for VIP implementation.

Given considerations became the reasons for creating an experimental image
processing library for traditional MIMD-computers. The library was designed
on the base of VP principle and called PLVIP (Parallel Library for Vertical
Image Processing).

3 The PLVIP Library

The library PLVIP is implemented as a set of C-subprograms [5]. The program-
ming language C and the parallel programming interface MPI were chosen as
implementation tools; that provides both possibility of low-level manipulations
with bit planes and portability of the source code of the library to most present-
day multiprocessor architectures.

3.1 Data Formats

The key problem in carrying the idea of VP to conventional computers was the
design of the format of a bit plane. The impossibility of the implementation of
the full two-dimensional topology on the linear address space of a conventional
computer resulted in a compromise settlement that is similar to the way the VGA
video adapter maps video memory onto main memory in some graphics modes.
A bit plane of an M ×N image is represented by the set of M -bit strings formed
by sequentially kept machine words. The number of words in a string is equal
to M/DC, where DC is the machine word width (suppose that M is divisible
by DC). To support the neighborhood relation by shifts of machine words, the
correspondence between bits of a plane and pixels of the image is defined as
follows: the i-th (from leftmost) bit of the j-th (from lower address) word of
the k-th string of the bit plane corresponds to the pixel with the coordinates
(jDC + i, k) (Fig. 3).

On this basis, the formats of halftone images, as sets of bit planes, are built:
integer and fixed-point. The color depth of fixed-point images is an even number,
and the binary point divides the bit representation of a pixel value in half.

3.2 Organization of Computational Process

The domain decomposition was chosen as the basis principle of computations
parallelization: bit planes (and therefore halftone images) are cut into contigu-
ous horizontal strips whose number is equal to the number of the executing
processors; the strips are then distributed among the processors (Fig. 4).

This principle provides the effective parallelization of Boolean operations
and X-shifts, but Y-shifts, calculation of mass, and comparisons, in their general
form, require data transfer between processors. While comparisons of bit planes
and calculation of mass, intensity of interprocessor communications can be es-
sentially weakened in practical cases by using on a single processor P the result

178 E.V. Rusin

Fig. 3. The representation of a bit plane

Fig. 4. The basic parallelization principle of the PLVIP library: bit planes are cut into

strips

of these operations in the strip corresponding to P . However the intensive use of
Y-shifts by an algorithm makes it unsuitable for such parallelization. Therefore,
to provide alternative ways of parallelization, most operations are implemented
in the PLVIP library both for images cut into strips and for whole images on
one processor.

A “star” was chosen as the topology of computations: all input/output op-
erations and conversions of image formats are carried out by the one, “root”,
processor; the other processors receive data from the root, process it, and, if
necessary, return results to the root. The choice of such topology is stipulated
by features of the file system of the MVS–1000/M computer.

3.3 Subprograms of the Library

The set of the library subprograms includes ones for:

– library initialization/termination;
– image input/output in BMP and PCX format;

The Use of VP Principle in Parallel Image Processing 179

– image distribution among processors and assembling on the root processor
from strips;

– binary images (bit planes) handling: copying, bitwise Boolean operations,
shifts, comparisons, and calculation of the mass;

– halftone images handling: copying, converting between the vertical and the
traditional image formats, setting/getting the value of a pixel, etc.;

– halftone images arithmetic: pixel-wise summation, subtraction, multiplica-
tion, and division; calculation of the sum of image pixels and of the inner
product of two images;

– halftone images processing: building a histogram, profiles, a level set of pix-
els values; thinning by Zhang and Suen’s method [6]; and calculating the
Euclidean Distance Transform (EDT).

Table 1 shows the speed-up values of the execution of some subprograms
of the library on 2, 4, 8, 16, and 24 processors relative to the one-processor
execution (the size of the test images is 640 × 640 pixels, the calculations were
carried out on MVS–1000/M).

The exceeding, in some cases, the number of executing processors N by speed-
up values can be explained by the following two factors.

1. The size of data a single processor manipulates with decreases with the
growth of N , and beginning from some N = N∗, the processor places all
data to be processed in the CPU cache memory, which is much faster then
the main memory.

2. An optimization was applied in a number of the subprograms, which allows
reducing the volume of computations on a single processor. The optimization
is based on global properties of the strips processed by the processor (absence
of one (or zero) bits in a strip, coincidence of corresponding strips of two
planes, etc.) (see Sect. 4). With the growth of N and, respectively, with the
decrease of the size of the strips to be processed by a single processor, the
effectiveness of such optimization increases.

Table 1. Speed-up values of the execution of some PLVIP subprograms relative to

one-processor execution

Subprogram Number of processors
2 4 4 16 24

Pixel-wise multiplication 1.6 4.4 10.5 18.0 24.4
Inner product 2.0 3.8 7.4 14.4 19.9
Building a histogram 2.2 3.7 10.0 18.5 21.7
Thinning by Zhang and Suen 1.7 3.6 6.1 8.8 10.3
Building a level set of pixels values 1.7 3.3 7.6 10.0 20.0
Calculation of the EDT 2.0 4.7 7.5 15.5 20.0

180 E.V. Rusin

4 Optimization of Algorithms of Vertical Image
Processing

Bit-serial character of vertical processing results in direct relation of algorithm
execution time to the color depth of processed image. However, the optimization
of calculations by the branching of kind “if the i-th bit plane of an image is
filled exclusively with one bits (or zero bits), perform A; otherwise, B” allows,
in a number of cases, making the execution time of the “vertical” calculations
dependent not on a formal size of a pixel, but on the number of different values
that pixels of the image being processed take. This can be illustrated by the
example of the optimization of the histogram building and vertical profile build-
ing algorithms. Table 2 shows the time results (in seconds) of application of the
non-optimized and optimized algorithms of histogram building and of vertical
profile building to two similar grayscale images I1 and I2 of size 1600 × 1400
pixels, pixels of which take 231 different values in the range from 0 up to 255.
For I1 pixel representation, 8 bit planes are used (256 gray gradations); and for
I2, 16 (65536 gray gradations).

Table 2. The results of optimization of vertical image processing algorithms

Algorithm Image
I1 (8 bits per pixel) I2 (16 bits per pixel)

Building histogram (not optimized) .3700 93.0000
Building histogram (optimized) .3000 .3200
Building vertical profile (not optimized) .0072 .0178
Building vertical profile (optimized) .0072 .0103

The time complexity of the non-optimized algorithm of histogram building,
i.e. its execution time as a function of image color depth L, is O(2L) [7]. As
the table shows, the time of execution of the optimized algorithm turns out
to be almost independent on L. The optimization of the algorithm of vertical
profile building, whose time complexity is O(L), turns out to be less effective
because of comparability of computational costs of optimization with costs of
calculations themselves. Nevertheless, the growth of the execution time of the
optimized algorithm with the increase of the color depth is slower than linear.

5 Application of the Library PLVIP: Solution of the
Problem of Recovery of an Elevation Map from a Set
of Contours

5.1 Statement of the Problem

The library PLVIP was used for solving a problem of the recovery of an ele-
vation map from a set of contours. The problem is considered in the following
statement [8].

The Use of VP Principle in Parallel Image Processing 181

1. Let a rectangular region B of raster plane with square elements (pixels) be
given; B will represent the result of discretization of some region of the Earth
surface.

2. The set of B pixels in which the value of the height of the Earth surface is
equal to H is called a contour of the level H .

3. Let the set C1, C2, . . . , CS of the contours of the level L1, L2, . . . , LS respec-
tively be given on B, and Li < Lj when i < j.

4. The set of contours reflects the Earth surface continuity, that is, there are
no contours Ci and Cj , j > i + 1, that are not separated from one another
by the contours Ci+1, Ci+2, . . . , Cj−1.

On the basis of (1-4), it is required to approximate the value of Earth eleva-
tion in the pixels of the set U = B\

⋃S
i=1 Ci.

It was shown in [9] that the condition (4) can be weakened and one can
allow even an intersection of contours of different levels. However, the respective
changes in the algorithm do not influence its parallelization so all the reasonings
below will be referred to the simpler statement (1-4).

5.2 Algorithm of Solution

The considered algorithm of the problem solution is described in details in [9].
Without going in details, note that the algorithm consists of the following steps.

1. Each contour Ci is divided into non-intersecting subsets of pixels Cij , j =
1, . . . , J(i) (segments) such that two different segments of one contour Ci are
separated from one another by the set Di =

⋃
k �=i Ck.

2. For each segment Cij , a region of dependency dep(Cij) is built, which consists
of pixels not separated from Cij by Di (Fig. 5); in dep(Cij), a field Distij of
Euclidean distances to Cij and a field of the segment level Heightij, which
value is equal to Li in every pixel, is built.

3. Four global fields are assembled from the built local ones: Dist0 and Dist1,
which are the compositions of the fields of distances to the segments of even-
and odd-numbered contours respectively, and Height0 and Height1, which

Fig. 5. The segments of the contours C1, C2, and C3; the gray region is dep(C11)

182 E.V. Rusin

are the the similar compositions of the fields of segments levels (the operation
of the composition is correct because the regions of dependency of either two
segments of non-neighbor contours or two different segments of one contour
do not intersect).

4. The field of height approximating values H is obtained as the result of an
array arithmetic operation applied to the global fields built:

H =
Dist0Height1 + Dist1Height0

Dist1 + Dist0
.

This formula is a two-dimensional generalization of one-dimensional linear
interpolation; in the case of the “continuous” plane, it provides the contin-
uous 3D surface recovery.

The example of the algorithm application is shown on Fig. 6: the left picture
is the set of 15 contours on the raster map of the size 500 × 500 pixels (black
pixels on white background), the right picture is the result elevation map.

Fig. 6. The example of the recovery algorithm application

5.3 Parallelization of the Algorithm with the Library PLVIP

The most time-consuming parts of the algorithm are the extraction of segments
from contours and calculation of EDT for them (the final arithmetic operation
takes the small part of the algorithm execution time and can be easily parallelized
by the domain decomposition). At that, only EDT calculation is well parallelized
by the domain decomposition (as is seen from Table 1). The operation of segment
extraction and its region of dependency building consists of the iterative sequence
of the shifts of a contour image; moreover the criterion of the termination of
segment extraction is a predicate concerning some image as a whole, and this
image is changed from iteration to iteration.

The Use of VP Principle in Parallel Image Processing 183

Consider three approaches to the parallelization of the algorithm, imple-
mented with the PLVIP library.

Algorithm A1, the base parallelization way of the PLVIP library. Each
image involved in calculations is cut into horizontal strips, which are then dis-
tributed among processors. Here an image Y-shift results in the data transfer
across the boundary between neighbor strips, and the check of the condition of
the termination of segment extraction requires the synchronization of the work
of all executing processors. Next, for the parallel calculation of the distances field
of a segment, each processor needs the whole image of the segment obtained, so
it is necessary to assemble it on every processor. The obvious disadvantage of
this approach is the intensive interprocessor interaction.

Algorithm A2, parallelization by contours. Each processor processes (i.e.,
extracts segments, builds regions of their dependency, and calculates distances
and levels fields) its own subset of contours, and a contour is processed as a
whole by one processor. After that, the local fields of distances and of levels
are gathered on the root processor, where then the global fields Dist0(1) and
Height0(1) are composed. Next, the global fields, which are fixed-point images,
are cut into strips and distributed among the processors for the final arithmetic
operation carrying out. The advantage of this approach is the small dependency
of parallel processes, as synchronization and interprocessor interaction is required
only when the data obtained are assembled. The disadvantage is limiting the
number of processors by the number of contours and the possibility of non-
uniform load of the processors, since the workload of a single processor depends
on the number and complexity of the contours it processes.

Algorithm A3, parallelization by contours with the equalization of work-
load. The extraction of segments from each contour is carried out by one pro-
cessor. Processors that have no contours or that have already processed their
contours get extracted segments by request and calculate EDT for them. If there
are no requests for the segment, it is processed by the processor that have ex-
tracted it. The processing of requests is carried out by the root processor, which
does not take part in the calculations themselves. This approach seems to be the
most flexible of three listed ones; there is no strong processes dependency as in
A1, and more uniform processors load is reached than in A2.

The computational experiments were carried out on MVS–1000/M for the
set of 15 contours on the raster map of the size 1600×1400 pixels (total segments
number is 29951). The results of the experiments are shown in Table 3.

In the table, for each algorithm Ai, its execution time TAi (in seconds) and
its speed-up AcAi relative to the one-processor execution (2574 sec) are given
for different numbers of the executing processors. As it is seen, the algorithm A3

loses to other approaches in the execution speed for small (2-3) numbers of the
processors only.

The detailed analysis of the critical sections of all three algorithms is done
in [10]. Here we just note that the results of the experiments give illustration
in support of the chosen strategy of the library PLVIP building, providing the
alternative ways for the parallelization of computations.

184 E.V. Rusin

Table 3. The execution time of the parallel versions of the elevation map recovery

algorithm

Number Algorithm
of A1 A2 A3

processors TA1 AcA1 TA2 AcA2 TA3 AcA3

2 1136 2.27 1270 2.03 1943 1.33
3 911 2.83 965 2.67 1004 2.57
5 909 2.83 690 3.73 584 4.41
7 785 3.28 507 5.08 436 5.91
11 780 3.30 429 6.00 311 8.28
13 866 2.97 323 7.98 262 9.83
15 833 3.09 246 10.47 236 10.92
20 935 2.76 - - 220 11.71
24 - - - - 211 12.21

6 Conclusion

Despite the serious limitations posed by the vertical image representation (uni-
formity of computational algorithms, growth of computational costs with in-
crease of color depth, etc.), the creation of the library PLVIP is an important step
toward the understanding of the principles of building image processing systems
on conventional multiprocessor MIMD-computers. Based on the received expe-
rience, the work on creation of the universal high-performance image processing
library on the multiprocessor computers of the Siberian Supercomputer Center
starts in the Image Processing Laboratory of ICMMG SB RAS. Support of both
vertical and traditional image formats and a variety of parallelization methods
(”image on single processor”, ”cutting image into strips”, ”cutting image into
strips with overlapping”, etc.) have been chosen as the important principles of
building the library. In addition to the basis algorithms of image processing, the
original ones elaborated in the laboratory and oriented to the aerospace images
will be also included in the library.

References

1. Intel IPP. http://intel.com/software/products/ipp/
2. OpenCV. http://sourceforge.net/projects/opencvlibrary/

3. Potter J.L., Meilander W.C.: Array Processor Supercomputers. Proc. IEEE. 77
(1989) 1896–1914.

4. Shooman W.: Parallel computing with vertical data. AFIPS Conf. Proc. 18 (1960)
111–115.

5. PLVIP: the programmer’s manual.
http://loi.sscc.ru/web/lab/RFFI03/rusin/PLVIPman eng.htm

6. Zhang T. Y., Suen S.Y.: A Fast Parallel Algorithm for Thinning Digital Patterns.
Comm. ACM 3 (1984) 236–239.

The Use of VP Principle in Parallel Image Processing 185

7. Reeves A.P.: On Efficient Information Extraction Method For Parallel Processing.
Computer Graphics and Image Processing 14 (1980) 159–169.

8. Rusin E.V.: The Parallel Algorithm of Approximation of Earth Elevation Matrix by
Given Contours. Proc. Int. Conf. “Mathematical Methods in Geophysics”, Vol. 2.
ICMMG SB RAS, Novosibirsk (2003) 612–617 (in Russian).

9. Kim P.A., Pyatkin V.P., Rusin E.V.: Three Massively Parallel Algorithms for Solv-
ing Computational Geometry Problems by Using Euclidean Distance Transform.
Pattern Recognition and Image Analysis 14 (2004) 267–275.

10. Rusin E.V.: About Parallelization of an Algorithm of Earth Elevation Map Re-
covery from Given Contours. Proc. Int. Conf. Comp. Math. ICCM–2004, Vol. 2.
ICMMG SB RAS, Novosibirsk (2004) 197–202 (in Russian).

Parallel Implementation of Back-Propagation

Neural Network Software on SMP Computers�

Victor G. Tsaregorodtsev

Institute of Computational Modeling SB RAS, Krasnoyarsk, Russian Federation
tsar@neuropro.ru

Abstract. Experiments of neural network training procedure paralleli-
zation are conducted. Several styles of parallelization are described and
compared, estimations of neural network size and training set size that
allow speedup on two-processors SMP machine are obtained.

1 Introduction

Artificial neural networks are a flexible instrument for solving a lot of problems
including non-linear regression, supervised learning and pattern recognition, un-
supervised learning, associative memory, optimization tasks etc. Here we study
only a back-propagation neural networks introduced in 1986 and named so be-
cause of the main part of its training algorithm doing ”back propagation of
errors” to compute gradient vector along adjustable (trainable) variables.

Experiments of running neural networks on parallel computers start at the
end of 1980-ies [1,2,3], but mostly focus on the specific architectures – trans-
puters, connection machines, massively parallel computers. This epoch of inves-
tigations ends in the middle of 1990-ies with a remarkable works of [4,5,6,7,8]
(see also references therein). Moreover, results of [8] were confirmed recently
[9,10,11]: so-called online training is theoretically faster than batch-training, but
unparallelizable (batch training that accumulates penalties and updates over the
patterns of the training set can be parallelized, but in general converges slowly).

Here we study parallelization for SMP (symmetric multiprocessors) comput-
ers. This research becomes necessary due to wide usage of multiprocessor servers,
HyperThreading technology that was introduced by Intel Corp. recently, and
plans of Intel Corp. to step to multicore processors, each core of which will
support HyperThreading (i.e. can run two threads simultaneously under some
restrictions). So in a nearest future we will be able to run up to 4 parallel threads
on a single dual-core processor, and SMP computations will be of usual use.

Such a perspectives of hardware evolution makes SMP-programming more
valuable than clustering techniques because of widely usage of a common com-
puters (with multikernel processors therein) in a nearest future. Also, results
obtained for SMP-software give some landmarks for a cluster platforms too.

In the paper we briefly describe neural network structure and training al-
gorithm and possible parallelization schemes, then describe data bases used in
� This work was supported by the Krasnoyarsk regional scientific fund, grant 15G277.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 186–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parallel Implementation of Back-Propagation Neural Network Software 187

experiments and provide experimental results. Then we discuss some additional
questions and perspectives.

2 Artificial Neural Networks

2.1 Neural Network Structure

Here we use only a most convenient network structure – feedforward network
with a single hidden layer of neurons. For a input vector x of n components and
vector of desired outputs y of m components we can describe neural network
as follows. Firstly, we compute the outputs of a hidden layer of N neurons as

zi = f(
n∑

k=1

xkwki+w0i) for each that neuron i using nonlinear function f , usually

of sigmoidal form a-la f(θ) =
θ

c + |θ| , c > 0. Then we compute each j-th output

signal ŷj =
N∑

l=1

zlulj + u0j . Variables wab, ucd are trainable network coefficients

that should be adjusted during training. Training should minimize differences
between desired and obtained signals (yj and ŷj respectively) using some error
measure, e.g. of a mean square error form.

Different optimization methods can be used during training – random search,
genetic algorithms, gradient optimization techniques. Here we use the last one be-
cause ”back propagation of errors” (precisely, back propagation of partial deriva-
tives of the error measure) algorithm allows fast computation of gradient vector
of error measure function along values of trainable network variables. When we
obtain gradient vector, we can use gradient descent equation to improve quality
of network’s response by making step along the antigradient direction.

2.2 Training Scheme and Possibilities of Parallelization

Here we use batch training – accumulation of gradients for all the patterns col-
lected in training set to compute overall gradient: for error measure Hi(xi,yi) =
‖yi− ŷi(xi)‖ for a training pattern {xi,yi} and overall error H =

∑
Hi we can

compute ∇H as ∇H = ∇
∑

Hi =
∑
∇Hi, therefore computation of different

Hi’s and their gradients can be done in parallel over a different parts of the
training set. I.e. for two parallel threads and K training patterns we can divide
training set onto sets with pattern indexes {1, ..., K/2} and {K/2 + 1, ..., K}, si-
multaneously compute H1 and ∇H1 by the first and H2 and ∇H2 by the second
thread and then obtain final values of H = H1 + H2 and ∇H = ∇H1 +∇H2.

Oppositely, online-training corrects network after each pattern processing
(along ∇Hi, not ∇H) – this is unparallelizable due to frequent modifications of
the network and loss of suitability for any other parallelly computed gradient
(which becomes obsolete after model correction along the concurrent one).

Each batch-training epoch consists of overall gradient computation, unnec-
essary phase of step size and/or descent direction selection (e.g. using conjugate

188 V.G. Tsaregorodtsev

gradient method) and network modification. Iterations last until the desired
value of H is obtained or some stopping criteria is met, e.g. local minima found.

For SMP-parallelization, i.e. fast memory access without any slow network
links, we propose the following three data separation schemes:

1. Thread requests for a next unprocessed pattern, i.e. there is no hard or formal
separation of the training set. But we should additionally synchronize access
and modification of a pointer to a next pattern.

2. Hard separation – training set is divided onto a parts which number is equal
to a number of processors without any redivisioning lately. Each processor
(thread) here will work with a constant subset of patterns that can be cached.

3. Hard separation, but if the thread finishes his prescribed data processing, it
handles some of currently unprocessed data assigned to the other thread.

The third scheme is required because we can stop i-th pattern training when
the desired Hi is obtained. So we can skip ∇Hi computation, and when the
numbers of already-trained patterns in a sets corresponded to different threads
differs greatly, some threads may finish their work earlier and should wait others.

3 Data Bases Used in Experiments

We use 20 real-world data bases available from http://kdd.ics.uci.edu/. All of
them are classification tasks. Table 1 summarize data base properties (number
of classes, number of training examples and the number of bytes to store prepro-
cessed data base and some additional information needed) and neural networks
properties (number of neurons, input signals, number of adaptive variables in
network). For three data bases we use neural networks of two different size in
order to propagate results further along the network size scale.

4 Results of Experiments

Parallelization properties was implemented into author’s own neural network
software package running under MS Windows. We did not use any high-level
parallelization package but create and synchronize threads using Window API.
Neural network kernel previously was programmed careful enough – without
object orientation that can hurt performance, with manual reprogramming of
some routines using Assembler.

Experiments was conducted on a SMP workstation with two 1Ghz Pentium
III processors. For the last two parallelization schemes (as numbered in Section
2.2) we also study implementations with hard assignment of every thread to a
definite processor in order to maximize cache hitting for non-changing partitions
of training set. Curiously, this versions help to increase speedup further (about
3÷5%) not for the small data bases but also for the great ones too, where only
a little amount of data can be cached, but this results are not shown here.

Results of experiments are presented on Figures 1-3 where vertical axes count
speedup obtained over the initial single-threaded version.

Parallel Implementation of Back-Propagation Neural Network Software 189

Table 1. Data base sizes and corresponded neural network sizes

Database Num. of Num. of Num. of Num. of Num. of adaptive Data size,
name patterns input signals classes neurons variables in bytes

AnnThyroid 3772 21 3 10 253 437552
Car 1728 6 4 15 169 110592

HypoThyroid 3162 19 2 10 222 316200
Letter 20000 16 26 25 1101 5600000

Mushrooms 8124 111 2 10 1142 3802032
Musk 6598 166 2 10 / 15 1692 / 2537 4539424

Nursery 12960 8 5 20 285 1036800
OptDigits 3823 62 10 10 740 1284528
PageBlocks 5473 10 5 10 165 481624
PenDigits 7494 16 10 10 280 1139088
Satellite 4435 36 6 20 866 887000
Shuttle 43500 9 7 15 262 4350000

Spambase 4601 57 2 25 1502 1159452
Vowel 990 11 11 15 356 138600
Yeast 1484 8 10 40 770 178080

MF-Fac 2000 216 10 10 / 15 2280 / 3415 1904000
MF-Fou 2000 76 10 15 1315 784000
MF-Kar 2000 64 10 10 760 688000
MF-Pix 2000 240 10 10 /15 2520 / 3775 2096000
MF-Zer 2000 47 10 15 880 552000

Fig. 1. Speedup obtained using two threads over single thread. Marks on a horizontal
axis are from the simple ordering of the neural networks along their size

Fig.1 show speedup values when neural networks are simply ordered by their
size. Effectivenesses correspond to parallelization schemes numbering, which is
clear enough: for the scheme where threads simultaneously ask for the next un-
processed pattern great enough fraction of time is thrown away because of syn-
chronization waits. When data set is divided between threads the third scheme
with adaptive capturing of some examples unprocessed by the other thread runs
faster than scheme with no-helping-to-each-other threads.

190 V.G. Tsaregorodtsev

Fig. 2. The same results as in Fig.1, but horizontal axis counts real network size

Fig. 3. Dependencies between data size, in bytes, and achieved speedup

Fig.2 shows the same results as Fig.1 but horizontal axis correspond to a real
number of adaptive parameters in the network, so we can see more clearly that
concurrent (first one) scheme gives no speedup for nets with less than 300 coeffi-
cients. Both Fig.1 and Fig.2 indicate speedup improvement with the network size
growth, so it’s possible to conclude that parallelization can be efficient (gives, at
least, speedup of 1.5 for two-processors computer) only for the back-propagation
networks with 1000 synapses at least. Network of that size is suitable for the
great number of real world problems, and it’s difficult to find a problem where
a network with 10000 or more weights is required – but only for such a big
networks we can achieve speedup near the theoretical limit of 2.

We should note that computations during neural network training are mainly
of multiplication/accumulation instructions (see Section 2) that can be efficiently
encoded by the compiler using SSE instructions (or programmer by itself can use
vector-matrix computation package with SSE optimization therein) – this is the
reason for the great influence of threads synchronization routines because each
training epoch for small and medium-sized nets last only fraction of a second.

Parallel Implementation of Back-Propagation Neural Network Software 191

There may exist some dependence between speedup ratio and data base size
(e.g., cache size influence), but less certain. Data base size affect on effective-
ness less than network size, all the speedup drops on Fig.3 correspond to small
nets.

5 Conclusion

We study the effectiveness of neural network software parallelization on two-
processors SMP computer, explore three methods of data separation and some
additional tricks. Obtained results are promising: for the most efficient scheme we
obtain average speedup about 1.5 over a single-threaded program, and speedup
varies from 1.2 to more than 1.6 over a wide pairs of network and data sizes.

We plan to step to heterogeneous parallel scemes which is necessary for Hy-
perThreading feature of Intel Pentium IV Prescott processor where two threads
can run simultaneously only while using different blocks of CPU, e.g. floating
point and general purpose blocks. Also we’ll study techniques and influental
things more carefully, for other network structures and methods too [12].

References

1. Beyon T. A parallel implementation of the back-propagation algorithm on a net-
work of transputers / Proc. First IEEE Int. Neural Network Conf. 1987.

2. Murali, P., Wechsler, H., Manohar, M. Fault-tolerance and learning performance
of the back-propagation algorithm using massively parallel implementation / Proc.
of Frontiers’90, The Third Symposium on the Frontiers of Massively Parallel Pro-
cessing. College Park, MD, USA. 1990. – pp.364-367.

3. Paugam-Moisy H. On parallel algorithm for backpropagation by partitioning the
training set / Proc. Fifth Int. Conf. Neural Networks and Their Applications.
Nimes, France. 1992. – pp.53-65.

4. Kumar V., Shekhar S, Amin M.B. A scalable parallel formulation of backpropaga-
tion algorithm for hypercubes and related architectures / IEEE Trans. on Parallel
and Distributed Systems, 1994. Vol.5. Issue 10. – pp.1073-1090.

5. Prechelt L. Data locality and load balancing for parallel neural network learning /
Proc. Workshop on Compilers for Parallel Computers. Spain, 1995. – pp.111-127.

6. Misra M. Parallel environments for implementing neural networks / Neural Com-
puting Surveys, 1997. Vol.1. – pp.48-60.

7. Strey A. EpsiloNN – A tool for the abstract specification and parallel simulation
of neural networks / System analysis - Modeling - Simulation, special issue on
Simulation of Artificial Neural Networks, 1999. Vol.34. No.4.

8. Torresen J., Tomita S., Landsverk O. The relation of weight update frequency to
convergence of BP / Proc. World Conf. Neural Networks (WCNN’1995). Washing-
ton, USA. 1995. – pp.679-682.

9. Wilson D.R., Martinez T.R. The general inefficiency of batch training for gradient
descent learning / Neural Networks. 2003, Vol.16. Issue 10. – pp.1429-1451.

10. Bottou L., LeCun Y. Large scale online learning / Advances in Neural Information
Processing Systems 16 (2003). MIT Press, 2004. – pp.217-224.

192 V.G. Tsaregorodtsev

11. Tsaregorodtsev V.G. General inefficiency of batch gradient usage for neural net-
work training / Proc. XII Conf. ”Neuroinformatics and their applications”. Kras-
noyarsk, Russia. 2004. – pp.145-151. (in Russian).

12. Tsaregorodtsev V.G. Perspectives for parallelization of neural-network data pro-
cessing and analysis software/ Proc. III Conf. ”Mathematics, Informatics, Control”.
Irkutsk, Russia. 2004. – 6p. (in Russian).

Development of Predictive TFRC with Neural

Network

Sung-goo Yoo1, Kil To Chong2, and Hyong-suk Kim2

1 Chonbuk National Univ., Control and Instrumentation, 664-14 1Ga Duckjin-Dong,
Duckjin-Gu Jeonju Jeonbuk 561-756, South Korea

ding5@chonbuk.ac.kr
2 Chonbuk National Univ., Electronics and Information, 664-14 1Ga Duckjin-Dong,

Duckjin-Gu Jeonju Jeonbuk 561-756, South Korea
{kitchong, hskim}@chonbuk.ac.kr

Abstract. As Internet real-time multimedia applications increase, the
bandwidth available to TCP connections is stifled by UDP traffic, which
results in the performance of overall system to be extremely deterio-
rated. Therefore, developing a new transmission protocol is necessary.
The TCP-friendly algorithm is an example satisfying this necessity. The
TCP-Friendly Rate Control (TFRC) is an UDP-based protocol that con-
trols the transmission rate based on the variables such as RTT and PLR.
In the conventional data transmission processing, the transmission rate is
determined by the RTT and PLR of the previous transmission period. If
the one-step ahead predicted values of RTT and PLR are used to deter-
mine the transmission rate, the performance of network will be improved
significantly. This paper proposes a predictive TFRC protocol with one-
step ahead RTT and PLR. A multi-layer perceptron neural network is
used as the prediction model, and the Levenberg-Marquardt algorithm is
used as a training algorithm. The values of RTT and PLR were collected
using UDP protocol in the real system used for NN modeling. The per-
formance of the predictive TFRC was evaluated by the share of Internet
bandwidth with various protocols in terms of the packet transmission
rate. The extensive experiment of the suggested system in real system
was performed and proves its advantages.

1 Introduction

Most Internet traffics are caused by TCP based protocols, such as HTTP (Hy-
pertext Transfer Protocol), SMTP (Simple Mail Transfer Protocol), FTP (File
Transfer Protocol). In addition, there is a new issue stemming from an increase
Internet traffic, which is due to the real-time audio/video streaming applications,
in using an UDP, such as an IP telephony, Internet audio player, and VOD. A
real-time application generally doesn’t use a TCP [1], and uses a UDP [1] algo-
rithm, which doesn’t consider congestion control. If congestion control applied
in the network where a TCP and UDP share the same link, the TCP will reduce
the transmission rate to solve the congestion problem; however, the UDP will
maintain its transmission rate and increase the congestion due to it occupies a

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 193–205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

194 S.-g. Yoo, K.T. Chong, and H.-s. Kim

large part of the effective bandwidth. This property will facilitate an imbalance
in the use of a network.

In order to solve these problems, a modified rule of transmission rate control
can be applied to non-TCP traffics for sharing the bandwidth fairly with the
mechanism of TCP transmission. This transmission rule should have the prop-
erty that non-TCP applications include the TCP-friendly property, in which the
system should support a fair distribution. There have been various TCP-friendly
algorithms reported to solve unequal distributions [2][3][4]. The most prominent
algorithms among them are the Rate Adaptation Protocol (RAP)[5], and TCP
Friendly Rate Control (TFRC)[6].

An important property of a TCP-friendly algorithm is control the transmis-
sion rate adaptively by measuring the network condition. However, this property
doesn’t consider a QoS (Quality of Service), which affects the quality of a trans-
mitted image, due to focus on the fairness aspect for TCP flows. In addition,
the existing TCP-friendly algorithm determines the control transmission rates
based on RTT and PLR of the previous states. Therefore, when the packets are
transmitted through network based on the transmission rate is not appropriate
for the present network condition anymore. The transmission rate is optimal
for the past packet transmission condition. This suggested algorithm estimates
the Internet bandwidth during data transmission, which is called the RTT, and
PLR and predict the one-step-ahead value of them using a neural network. The
predicted RTT and PLR were used as important factors for a prediction of trans-
mission rate. Moreover, the prediction model included a transmission protocol
that developed through this study are evaluated its performance through real
network system tests.

A decision tree, rule based, and neural network were generally used to build
the prediction model. This study used a neural network, which can model the
nonlinear system [7]. A multi-layer perceptron (MLP) structure [8] was used
as a model structure. The Levenberg-Marquardt Back-propagation (LMBP)[9]
solving the problem converges to a local minimum, which is a demerit of the
back-propagation algorithm [10], was used to train the neural network(NN).

In order to improve the accuracy of the prediction model, the NN was trained
by using a moving average value, which has been applied to the transmission rate
control mechanism of the TCP [11][12]. In addition, a hybrid method, which
operates the prediction model when the network is under a congestion situation,
and the general TFRC was operates when the network is in a normal operating
condition. The main contributions of this paper are

1. Development of a neural network model for the RTT and PLR of the network.
2. Propose a predictive TFRC protocol.
3. Improvethe valid transmission packet rate compare to the TFRC protocol.
4. The suggested predictive TFRC does not deteriorate the TCP transmission

compare to the UDP protocol.

After brief reviewing the basic concept of TFRC and NN in section 2 and 3,
the real experimental system has been set up in order to verify the suggested

Development of Predictive TFRC with Neural Network 195

system in section 4. The measurement of the RTT and PLR has also been dis-
cussed in section 5.1 and 5.2. Section 5.3 shows the neural network modeling
and the packet transmission rate control tests in the real system and the brief
concluding remarks are offered in section 6.

2 TCP-Friendly Transmission Rate Control

Multimedia transmission can be classified into two main methods, which involve
either replaying the entire multimedia file previously downloaded from a web
server or streaming. In the latter case, a part of the entire file is downloaded and
the multimedia content is displayed while the rest of the file is being downloaded.
The method of streaming is well suited to the real-time broadcasting of audio
and video data.

In the case of multimedia transmission using the Internet, packet loss occurs
mainly as a result of transmission errors and congestion. In response to this, the
TCP protocol reduces the transmission rate using its own method of congestion
control. Therefore, if a number of TCP connections that have a similar RTT
delay share the same channel, they will share the available bandwidth equally.
The problem of bandwidth distribution was not studied in detail in the past,
because almost all traffic utilized a TCP based protocol, but it is becoming one
of the most important issues, due to the increasing use of real-time applications,
such as IP telephony, video conferencing, etc., and Non-TCP traffic such as au-
dio/video streaming services and various other services. Unfortunately, whereas
TCP reduces the transmission rate when the network is under congestion condi-
tion, but Non-TCP protocols increase the overall amount of traffic by continuing
to transmit at their original transmission rate, because Non-TCP traffic does not
incorporate any method of rate control that is compatible with TCP. Therefore,
a mechanism is needed which allows the transmission rate of Non-TCP traffic
to be controlled and which is compatible with that of TCP. In addition, it is
necessary to distribute the available bandwidth, by making the Non-TCP traffic
adhere to the TCP-Friendly protocol, in order to solve the problem referred to
as TCP-Friendly congestion.

Any method based on TCP-Friendly congestion control should calculate the
transmission rate based on a TCP model [11], in which the average transmission
rate over time can modeled by considering the operation of TCP in the steady
state. This depends on the operation of the TCP protocol, but can basically be
expressed as Eq. (1).

R = f (PLR, RTT) (1)

where R is the transmission rate, PLR is the packet loss rate, and RTT is the
round trip time.

The transmission rate used in this paper is in Eq. (2). The derivation of the
Eq. (2) is shown in [2].

196 S.-g. Yoo, K.T. Chong, and H.-s. Kim

R =
s

RTT

√
2p
3 + tRTO

(
3
√

3p
8

)
p (1 + 32p2)

(2)

where, tRTO is the retransmission time out, p is the packet loss rate.

3 Neural Netowork

The structure of the predictive model used in this study is the multi-layer per-
ceptron NN and consists of an input layer, hidden layer and output layer. The
output of the multi-layer perceptron is presented in Eq. (3) [13].

ŷi (t) = gi [ϕ, θ] Fi

⎡⎣ nh∑
j=1

wi,jfj

(nϕ∑
l=1

wj,lϕl + wj,0

)
+ Wi,0

⎤⎦ (3)

where θ is a parameter vector that includes all of the adjustable parameters in the
neural network structure, and {wj,l, Wi,j} are weights and biases, respectively.

The error function, E, that represents the error between the output of the
training data and the output of the neural network can be defined as in Eq. (4)

E =
1
2

k∑
n=1

(yn − on)2 (4)

where yn is the target value of the training data and on is the output of the
neural network.

The LM algorithm was used in training. This algorithm can solve dynami-
cally the problems presented in the Steepest Descent and Newton methods. The
weight w can be obtained by using Eq. (5).

wi+1 = wi − (H + λI)−1∇F (wi) (5)

where ∇F (wi) = ∂F
∂wi

:gradient F =
∑N

k=0 e2
k is SSE(square-sum error) k is the

kth sample,H = ∇2F (w) is the Hessian matrix, and λ is a parameter varying
dynamically.

However, the LMBP algorithm adopts the Gauss-Newton method that ap-
proximates the value of H since the second derivative produces computational
problems. That is, the value of H used in the Newton method can be obtained
by means of Eq. (6).

H =
[
∇2F (w)

]
ij

=
∂2F (x)
∂wi∂wj

= 2
N∑

k=0

[
∂ek (w)

∂wi

∂ek (w)
∂wj

+ ek (w)
∂2ek (w)
∂wi∂wj

]
(6)

where the second term of Eq. (6) can be neglected, hence

[
∇2F (w)

]
ij
∼= 2

N∑
k=0

∂ek (w)
∂wi

∂ek (w)
∂wj

= 2JT (w) J (w) (7)

Development of Predictive TFRC with Neural Network 197

where Jki = ∂ek

∂wi
is a Jacobian matrix. By using this approximation, the necessity

to use the second derivative can be eliminated. ∇F (wi) presented in Eq. (8) is
defined by

∇F (wi) = JT (wi) e (wi) (8)

Therefore, the modified LMBP algorithm can be expressed as Eq. (9).

wm+1 = wm −
[
JT (wm) J (wm) + λmI

]−1
JT (wm) e (wm) (9)

4 Experimental Set Up

4.1 End-to-End- System

A VBR(Variable Bit Rate) video transmission system through the Internet is a
type of end-to-end(ENDE) system based on a server-client configuration. Fig.
1 presents a typical server-client model[13]. The server-client system used in
this study was configured by a server, which was located in Cheonbuk National
University and had an IP address of 210.117.183.41, and a client, which was
located at Seoul National University and had an IP address of 147.46.156.91.
The operation system of the server is Wow Linux 7.3(kernel 2.4.18-4) and the
CPU is PIV 1.7 MHz, and memory size is 512 Mbyte. The client computer using
Redhat Linux 8.0(kernel 2.4.20), AMD Athlon 1200, and the memory size is
same as the server.

Fig. 1. Structure of Server-Client system

The server has two processes, one is the data transmission processor and
the other one is transmission prediction processor, and the client also has tow
processors such as data receiving and retransmission processor. Each processor
was independently operated. The transmission prediction processor in the server
stores the predicted transmission rate to the shared memory in real-time, and
the data transmission processor transmitted data according to the transmission
rate, which was stored in the shared memory. The receiving and retransmission
processor located in the client side retransmits the probe header of the packet

198 S.-g. Yoo, K.T. Chong, and H.-s. Kim

to the transmission rate prediction processor. Once the client processor receives
the packet, it divides the packet into a probe header and a data file, it then
retransmits the probe header, which has a new time data required to figure out
the RTT and PLR, to the transmission rate prediction processor.

The suggested system uses a shared memory for real time data transmission.
The main reason using a shared memory in the system is that fast access to
data can be achieved. Communication between different processors required four
different duplications of data; however, the shared memory method presented two
different duplications of data. Since rapid communication between the processors
can be achieved using a shared memory method, it is possible for the data
transmission processor and transmission rate prediction processor to operate
their own processing without any interrupts.

4.2 Data Transmission Rate Control Algorithm

The transmission processor can transmit packets using the TCP-Friendly method,
as mentioned in Chapter 2. The packet transmission test was conducted using
Eq. (2). The initial transmission speed is 100kb/s, and the whole packet size is
625 bytes, of which 64 bytes are reserved for the probe header. The probe header
is attached to the header of the transmission packet, in order to measure the RTT
and PLR. The probe header constitutes 7 segments; Sequence Number(tp), Se-
quence Number(rp), Sequence Number(RTT-PLR ep), Time Stamp(tp), Time
Stamp(rp), Time Stamp(RTT-PLR ep), and the User Data. The transmission
processor (tp), receiving-retransmission processor (rp), and RTT-PLR estima-
tion processor (RTT-PLR ep) were implemented using a socket program written
in the ANSI C language. The ’ep’ appeared in the above indicates the trans-
mission processor, ’rp’ is for receiving-retransmission processor, ’RTT-PLR ep’
represents the RTT-PLR estimation processor.

In addition, it has a storage area used to store numbers of transmitted
packets, so as to keep track of the order in which the packets are transmitted
from each processor and their transmission time. When the transmission proces-
sor transmits a packet to the receiving-retransmission processor, the receiving-
retransmission processor separates the probe header from the received packet,
inserts the packet number and current time into the probe header, and then
retransmits it to the RTT-PLR estimation processor. When the RTT-PLR ep
processor receives the probe header, it estimates the RTT and PLR using Eqs.
(10) and (11), respectively.

RTT = packet arrival time of RTT-PLR ep - Transmission time of tp (10)

PLR(%) = 1− total sum of the received packets at the round i

total sum of the transmitted packets at the round i
× 100

= 1− Ri −Ri−1

Si − Si−1
× 100 (11)

Ri : the sequence number of the latest received data at i
Si : the sequence number of the latest transmitted data at i

Development of Predictive TFRC with Neural Network 199

Ri−1 : the sequence number of the latest received data at (i− 1)
Si−1 : the sequence number of the latest transmitted data at (i− 1)

The RTT and PLR are measured in every 2 seconds called ’round’ in this
paper. where the round refers to a time interval of 2 seconds. When the Internet is
under the congested situation, the values of RTT and PLR are likely to fluctuate
rapidly. Even though controlling the transmission rate can help reducing the
amount of traffic problems by rapidly applying these suddenly changed values of
RTT and PLR directly to the TFRC mechanism, the quality of service of real-
time applications will rapidly deteriorate. In order to prevent this problem, the
RTT and PLR of the TFRC algorithm should adhere to the calculation method
used by the RTT and PLR of the TCP algorithm. The TCP protocol can change
the estimated values of RTT and PLR naturally by using a low-pass filter. The
estimated values of RTT and PLR can be obtained by using the moving average
as described in Eq. (12).

RTT∗ = αRTT∗ + (1− α) newRTT , PLR∗ = αPLR∗ + (1− α) newPLR (12)

where α is a parameter that has a recommended value of 0.9, and newRTT
and newPLR are recently estimated values of RTT and PLR, respectively. The
moving average can be used to control the transmission rate, by reducing any
sudden changes in the values of the RTT and PLR when the network is congested.
In the transmission test, the RTT and PLR are estimated at every round, and
the moving average RTT and moving average PLR are determined using Eq.
(12). Although a prediction model presented an excellent performance, in the
case of the prediction of RTT and PLR using a prediction model after passing
one round, some errors could possibly be occur. In this study, a TCP-friendly
algorithm was used to send data for the stable state having no loads in the
network. A predictive TFRC method, which controls the transmission rate using
the proposed prediction model, was used to decide the transmission rate when
the PLR was over 5%. This hybrid method can be effectively used to control
the transmission rate by removing an error of the prediction model, which can
occur in the network that has less loads. If PLR is less than 5%, use Eq. (13),
otherwise use Eq. (14).

R =
s

RTT

√
2p
3 + tRTO

(
3
√

3p
8

)
p (1 + 32p2)

(13)

R =
s

RTT2

√
2p2
3 + tRTO

(
3
√

3p2
8

)
p2 (1 + 32p2

2)

(14)

where, tRTO is the retransmission time out, RTT2 and p2 are RTT and PLR
obtained using prediction NN.

200 S.-g. Yoo, K.T. Chong, and H.-s. Kim

5 Experimental Results

5.1 Neural Network Modeling

This section evaluates NN predictive modeling performance for the RTT and
PLR. The training data of the RTT and PLR was collected using the real system
mentioned in section 4 using UDP. A traffic generator IPERF [14] was used to
produce the various situations involving network control in this experiment.

Table 1 shows the amount of traffic generated by IPERF, and the measured
values of the RTT and PLR from the experimental test, the first row shows the
amount of traffic generated. The average RTT is about 10.3ms when there is
no traffic, and the average PLR is about 0.5%. The RTT and PLR increased
rapidly when the traffic load is increased.

A multi-layer NN structure and LMBP training algorithm were used to obtain
one-step-ahead values of RTT and PLR. The NN model consists of 20 nodes
in the input layer, 8 nodes in the hidden layer, and the output layer has a
single node. The packet transmission test was performed by the communicating
between Cheonju and Seoul, 30 minutes long in every hour. The experiment
performed 15 times a day for more than one week. Approximately 70% of the
collected data was used to train the NN, and the rest was used to validate the
obtained NN model.

Fig. 2 depicts a part of the RTT data collected from the UDP transmission
while a load was applied as shown in table 1.

The NN was trained until the error reaches smaller than 1.4%. Also the PLR
data was collected with similar method as in the RTT case in order to obtain

Table 1. Experiment Results of RTT and PLR

0 Mbyte 1 Mbyte 2 Mbyte 5 Mbyte 7 Mbyte

Max.RTT(ms) 10.8 17.3 23.9 45.2 79.3
Min.RTT(ms) 10.1 115. 19.4 29.7 34.9
Max.PLR(%) 1.2 2.4 8.1 12.7 14.4
Min.PLR(%) 0 0.5 3.8 11.3 12.5

Fig. 2. Response of RTT obtained using UDP

Development of Predictive TFRC with Neural Network 201

the training and the validation data for PLR as shown in Table 1. The training
procedures performed until the error reduces to as low as 1.52%.

NN Modeling of RTT and PLR using the moving average method also has
been performed. It demonstrated that the moving average produces better re-
sults when the data set characterized with high variation. By reducing the rapid
change, it was easier to train the NN, which improved the training where the
error can be low as 1.1% for RTT and 0.87% for PLR case.

5.2 Validation of a Prediction NN Model

Validation of a RTT and PLR. Fig. 3 and 4 present the validation results
of the RTT and PLR prediction model using data that was not applied to the
training process. The dotted line is the output of the neural network. It reveals
that an error occurred in the normal state, however, the error was reduced when
a large load was applied, where the error rate for RTT was 5% and the PLR was

0 20 40 60 80 100 120 140 160 180 200
5

10

15

20

25

30

35

40
Validation of RTT

Time

R
T

T

Validation data
Real data

Fig. 3. Validation for RTT

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Validation of PLR

Time

P
L

R

Validation data
Real data

Fig. 4. Validation for PLR

0 20 40 60 80 100 120 140 160 180 200
14

16

18

20

22

24

26
Validation of Moving average RTT

Time

R
T

T

Validation data
Real data

Fig. 5. Results of the validation
with moving average RTT

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time

P
L

R

Validation of Moving average PLR

Validation data
Real data

Fig. 6. Results of the validation
with moving average PLR

202 S.-g. Yoo, K.T. Chong, and H.-s. Kim

3.82%. This paper improved the performance of a prediction model by reducing
the variation range of the PLR using the moving average value in the next
section.

Validation of RTT and PLR with moving average method. Fig. 5
presents the validation results of the RTT neural network model that estimates
using a moving average values. An error occurred at the maximum value was
negligible. In addition, the error rate was about 1.125% and significantly im-
proved compare to the case that didn’t apply the moving average, where the
error rate was 5%.

Fig. 6 presents the validation results of the NN model that estimates the PLR
using the moving average values. The graph showed improved results compared
to the case without moving average method, where the error rate was about 0.9%.

5.3 Measuring a Bandwidth Sharing Rate

This section conducted a test from the viewpoint of bandwidth sharing for the
TFRC (pTFRC1) that was simply applied by a prediction model, and TFRC
(pTFRC2) that was applied by the prediction transmission using both the mov-
ing average and hybrid method.

Simultaneous Transmission of TCP and UDP. Fig. 7 presents the trans-
mission rate for the simultaneous transmission of TCP and UDP by applying
the load from 0 to 7Mbps, which were produced using a traffic generator. This
process revealed that the UDP transmits data with a constant transmission rate,
regardless of the network condition, because it has no congestion control mecha-
nism. However, the TCP reduced its transmission rate according to the increase
in loads using a congestion control algorithm. In addition, the transmission rate
of TCP significantly decreased when loads is increased due to the aggressive
transmission of the UDP.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
200

300

400

500

600

700

800

900

1000

Traffic size[Mbps]

T
ra

n
s
m

is
s
io

n
 r

a
te

[b
p

s
]

TCP
UDP

Fig. 7. Simultaneous Transmission
rate for TCP and UDP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
200

300

400

500

600

700

800

900

1000

Traffic size[Mbps]

T
ra

n
s
m

is
s
io

n
 r

a
te

[b
p

s
]

TCP
TFRC

Fig. 8. Simultaneous Transmission
rate for TCP and TFRC

Development of Predictive TFRC with Neural Network 203

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
200

300

400

500

600

700

800

900

1000

Traffic size[Mbps]

T
ra

n
s
m

is
s
io

n
 r

a
te

[b
p

s
]

TCP
pTFRC1

Fig. 9. Simultaneous Transmission
rate for TCP and pTFRC1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
200

300

400

500

600

700

800

900

1000

Traffic size[Mbps]

T
ra

n
s
m

is
s
io

n
 r

a
te

[b
p

s
]

TCP
pTFRC2

Fig. 10. Simultaneous Transmis-
sion rate for TCP and pTFRC2

Fig. 8 presents the transmission rate for the simultaneous transmission of
TCP and TFRC by applying the same load as in the previous case. It revealed
that the TFRC significantly decreased the transmission rate according to the in-
crease in loads using a congestion control algorithm. The TCP also decreased the
transmission rate in proportion to the size of loads. However, the TCP presented
a higher transmission rate than that of the simultaneous transmission with the
UDP. This result was achieved due to the fact that the TFRC has mechanism
sharing the bandwidth with other protocols.

Simultaneous Transmission of TCP/pTFRC1 and TCP/pTFRC2. Fig.
9 presents the simultaneous transmission of the TFRC (pTFRC1) and TCP
algorithms, which decide the transmission rate by predicting the RTT and PLR,
which did not using either a moving average or hybrid method. The pTFRC1
reduced the transmission rate according to the size of the loads. However, this
demonstrates that the change in the transmission rate was minute. This means
that the prediction error still existed, and the aggressive transmission of the
UDP continued, even though the traffic was predicted.

Fig. 10 presents the simultaneous transmission of the TFRC (pTFRC2) and
TCP that were applied using the moving average and hybrid method. The pT-
FRC2 reduces its transmission rate compared to the existing pTFRC1, according
to the increase in loads, and presented higher transmission rate than that of the
TFRC. This means that the transmission rate was controlled by adapting the
traffic situation, while the sharing rate of TCP was maintained.

Simultaneous Transmission of every protocol. Fig. 11 presents the trans-
mission rate using the four different TCP protocols studied so far. It revealed
that the transmission rate of the TCP significantly decreased compared to other
protocols, because the UDP and pTFRC1 presented an aggressive transmission.
However, the TFRC and pTFRC2 provide a smooth reduction in TCP. The
pTFRC2 guaranteed the transmission rate of the TCP, while it maintained a

204 S.-g. Yoo, K.T. Chong, and H.-s. Kim

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
600

650

700

750

800

850

900

950

1000

Traffic size[Mbps]

T
ra

n
s
m

is
s
io

n
 r

a
te

[b
p

s
]

with UDP
with TFRC
with pTFRC1
with pTFRC2

Fig. 11. Transmission rate of all
protocol

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
200

300

400

500

600

700

800

900

1000

Traffic size[Mbps]

T
ra

n
s
m

is
s
io

n
 r

a
te

[b
p

s
]

UDP
TFRC
pTFRC1
pTFRC2

Fig. 12. Transmission rate with re-
spect to the packet size

higher transmission rate than that of the TFRC, even though the TFRC pre-
sented smoother changes than those of the pTFRC2.

Fig. 12 presents the transmission rate for each protocol according to the
size of loads. It reveals that the UDP transmits data using a constant speed
because it has no congestion control algorithm. The pTFRC1 still aggressively
transmits data due to a lack of prediction performance, even though it reduces
the transmission rate according to the load. The TFRC significantly reduced the
transmission rate in order to guarantee the sharing rate of the TCP. However,
the pTFRC2 maintained a higher transmission rate than that of the pTFRC1,
while it guarantees the sharing rate of the TCP.

6 Conclusion

This paper developed and evaluated a protocol, which controls the transmission
rate by predicting an Internet bandwidth in the data transmission through the
Internet. A neural network that is able to produce a nonlinear system was used
as a predictive modeling method. In addition, a LMBP algorithm, which showed
a fast convergence, was applied to train the model.

The RTT and PLR were collected using the UDP transmission method, and
the collected data was used to train the prediction model. In order to improve the
performance of the prediction model, the moving average values of the RTT and
PLR were used. Moreover, a hybrid method was used to improve the performance
when the network is not congested.

In order to evaluate the performance of the prediction model proposed in
this paper, a system was set up that transmits a packet between the systems
located in Cheonju and Seoul. The possible various situations of the Internet
were produced using a traffic generator. The sharing rate of the bandwidth in
the congestion situation was measured using the simultaneous transmission of
each protocol conjunction with the TCP, one of the typical transmission methods

Development of Predictive TFRC with Neural Network 205

for the Internet. The test revealed that the prediction model trained by using the
moving average value presented a good transmission rate, while it maintained
the transmission rate of the TCP.

References

1. A.S Tanenbaum: Computer Networks(third edition). Prentice Hall International,
Inc. (1996)

2. Joerg Widmer, Robert Denda, Martin Mauve: A Survey on TCP-Friendly Conges-
tion Control. IEEE Network, vol 3 (2001) 28-37

3. L. Rizzo: Pgmcc: A TCP-Friendly single-rate multicast Congestion control scheme.
Proc. ACM SIGCOMM, Stocholm, Sweden (2000) 17-28

4. S. Sisalem, A. Wolisz: MLDA: A TCP-Friendly Congestion Control Framework for
Heterogeneous Multicast Environments. 8th Int́l. Wksp. QoS (2000)

5. D. Rajate, M. Handley, D. Estrin: RAP : An end-to-end rate-based congestion
control mechanism or realtime streams in the Internet. INFOCOM’99, vol 3 (1999)
1337-1345

6. J. Mahadavi and S. Floyd: TCP-Friendly unicast rate-based flow control. Tech.
Rep., Technical note sent to end2end interest ailing list (1997)

7. K. S. Narendra and K. Parthasarathy: Identification and control of dynamical
systems using neural network. IEEE Trans. Neural Networks, vol 1 (1990) 4-27

8. M. Norgaard, O. Ravn, N.K. Poulsen, L. K. Hansen: Neural Networks for Modeling
and Control of Dynamic System. A practitioner’s Handbook, Springer

9. Finschi: An implementation of the Levenberg-Marquardt algorithm. clau-
siusstrasses 45, CH-8092, Zuerich (1996)

10. S. Haykin: Neural Networks. MacMillan (1994)
11. V. Jacobson: Congesion Avoidance and contro. SIGCOMM Symposium on Com-

munications Architectures and Protocols (1988) 214-329
12. Michael J. Donahoo, Kenneth L. Calvert: The Pocket Guide to TCP/IP Socket :

C Version. Morgan Kaufmann Publishers, Inc. (2001)
13. Ikjun Yeom: ENDE An End-To-End Network Delay Emulator. Texas A & M Uni-

versity (1998)
14. The IPERF: http://dast.nlanr.net/Projects/Iperf/

Planning of Parallel Abstract Programs

as Boolean Satisfiability

Gennady A. Oparin and Alexei P. Novopashin

Institute of Systems Dynamics and Control Theory,
Siberian Branch of Russian Academy of Sciences,

134, Lermontov st., 664033, Irkutsk, Russia
{oparin, apn}@icc.ru

Abstract. In this paper 1, a new formulation is proposed for the prob-
lem of constructing parallel abstract programs of a required length in
parallel computing systems. The conditions of a planning problem are
represented as a system of Boolean equations (constraints), whose solu-
tions determine the possible plans for activating the program modules.
Specifications of modules are stored in the knowledgebase of the plan-
ner. Constraint on number of processors and time delays at execution of
modules are taken into account.

1 Introduction

The declarative languages and systems of parallel modular programming [1], [2]
allow to accumulate knowledge of computing modules of a subject domain in
a computer memory and to use this knowledge for the automatic decision of
problems of given class. However the efficient use of this technology demands
the decision of a difficult problem of planning of the parallel abstract program
(constructing the plan for the problem solving).

Descriptions of modules (related by data) are located in the knowledgebase
of the planner. It is necessary to define what modules, in what sequence and
on what processors (from accessible) of the parallel computing system are to be
executed to calculate the required set B0 of target parameters from the given
set A0 of parameters (input data). The objective is to obtain a parallel plan for
solving the problem T = (A0, B0), which is:

(1) admissible (the modules must be ordered so that each be provided with
necessary input data at its starting moment or, in other words, for any input
parameter of the plan module, there must be at least one previously encountered
module with the same output parameter),

(2) repetition-free (each module cannot enter into the plan more than once),
(3) irredundant (elimination of any module from the plan leads to an inad-

missible plan),
(4) efficient (the plan length must be less than or equal to a given value k).

1 Supported by the Russian Foundation for Basic Research (project 04-07-90358).

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 206–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Planning of Parallel Abstract Programs as Boolean Satisfiability 207

We assume, that during constructing the parallel plan with the aforemen-
tioned properties the number of accessible processors of the parallel computing
system is limited by some size, there are time delays at execution of modules,
time of data transmission between modules is ignored. In this formulation, the
planning problem is NP-hard, its conditions can be represented as a system of
Boolean equations (constraints), and the proper plan of module execution is
a solution to this system. The advantage of Boolean modeling over the tradi-
tional deductive approach is that the first makes it possible to (1) obtain parallel
plans of required lengths, (2) take into account various constraints on the plan,
and, finally, (3) make use of existing efficient solvers for Boolean equations (or,
SAT-solvers), which, in some cases, are faster than special-purpose planning al-
gorithms. On the whole as noted in [3] such approach not only provides a more
flexible framework for stating different kinds of constraints on plans, but also
more accurately reflects the theory behind modern constraint-based planning
systems.

2 The Planner Knowledgebase

As a planner knowledgebase, we use a computational model KB=(F, Z, In, Out),
where F = {F1, ..., Fn} is the set of available modules acting on the field of
common transit data Z = {Z1, ..., Zm}, which are input or output parame-
ters for these modules; In ⊂ F × Z and Out ⊂ F × Z are relations reflect-
ing the interaction of modules with input or output data, respectively. Thus,
each module Fi is connected with two parametric sets Ai, Bi ⊂ Z called the
input and output, correspondingly. The input Ai identifies the data that are
needed to obtain the results represented by the output Bi. Hereafter, this will
be denoted by Fi(Ai; Bi). Without loss of generality, we assume that F1 and
F2 modules of the set F model the conditions of the statement of the planning
problem T = (A0, B0): the knowledgebase KB includes the modules F1(; A0)
and F2(B0;), where A0, B0 ⊂ Z. The absence of any attribute before or after
the semicolon means that the corresponding set is empty. F1 is called the module
of input data and F2 the target module.

The knowledgebase KB is assumed to be redundant in the sense that only a
part of modules of F are used to solve the problem, and/or the problem T has
several alternative solution plans.

The relations In and Out are conveniently given as two n × m Boolean
matrices A and B with the following elements: aij = 1 (bij = 1), if Zj is an input
(output) parameter for the module Fi. Furthermore, Ai and Bi (i = 1, ..., n)
denote the rows of these matrices, A′

i and B′
i (i = 1, ..., m) - their columns.

The rows and columns of A and B are the binary representations of subsets of
parameters and modules, respectively. The notation q ∈ S (where S is a binary
row of Ai, Bi, A′

i or B′
i) means that q takes the numbers of unit entries in the

binary row S.

208 G.A. Oparin and A.P. Novopashin

3 Boolean Modeling Without Resource Constraints

First of all we shall consider a case when constraint on number of processors
is absent, and time delays at execution of modules are ignored (constructing
the synchronous plan). Let us define the plan as a (k × n)-matrix Xof Boolean
variables xij , where xij = 1 means that the module Fj is at the i-th place in the
plan X . The total length of the plan is k, its row gives a set of parallel-executable
modules, and its columns correspond to the set of available F modules. Then,
Boolean constraints on entries of the matrix X have the following form.

Condition 1. The condition of the statement of the planning problem T =
(A0, B0) (the input-data module F1 = (; A0) and the target module F2 = (B0;)
are located at the first and last rows of the plan, respectively, and there are no
other modules in these rows):

x11 = 0,
n
∨

j=2
x1j = 0, xk2 = 0, xk1 = 0,

n
∨

j=3
xkj = 0.

Condition 2. The plan should be continuous (each row of the plan contains
at least one module):

k−1
∨

i=2

n
∧

j=1
xij = 0.

Condition 3. The plan should be repetition-free:

n
∨

j=1

k−1
∨

i=1

k
∨

p=i+1
(xij ∧ xpj) = 0.

Condition 4. The plan should be admissible:

k
∨

t=2

n
∨

p=1
(xtp ∧ y) = 0,

where

y =

⎧⎪⎪⎨⎪⎪⎩
∨

q∈Ap

t−1
∧

i=1
∧

j∈B′
q

xij , if (Ap
= 0) ∧ ((∀q ∈ Ap)(B′
q
= 0));

1, if (Ap
= 0) ∧ ((∃ q ∈ Ap)(B′
q = 0));

0, if Ap = 0.

Condition 5. The plan should be ordered (if the data preparation for a module
is completed at the (t − 1)-th row of the plan, then this module is necessarily
included in its t-th row):

k
∨

t=2

n
∨

p=1
(xtp ∧ v) = 0,

where

v =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∧

q∈Ap

∧
j∈B′

q

xt−1,j, if (Ap
= 0) ∧ ((∀q ∈ Ap)(B′
q
= 0));

1, if (Ap
= 0) ∧ ((∃ q ∈ Ap)(B′
q = 0));

0, if (Ap = 0) ∧ (t = 2);
1, if (Ap = 0) ∧ (t > 2).

Planning of Parallel Abstract Programs as Boolean Satisfiability 209

Condition 6. The plan should be irredundant:

k−1
∨

s=2

n
∨

r=1
(xsr ∧ u) = 0,

where

u =
k
∨

t=2

n
∨

p=1
(xtp ∧ y),

t and p subscripts satisfy the condition (t = s) ∧ (p = r), and y is determined
from the expression in condition 4.

Additional conditions are given by the originator of the planning problem:

g (x11, ..., x1n, ..., xk1, ..., xkn) = 0.

As examples we can consider the following:
a) The condition that the module Fj is necessarily included in the plan:

hj =
k−1
∧

i=2
xij = 0;

b) The condition that the module Fj is not included in the plan:

zj =
k−1
∨

i=2
xij = 0;

c) The condition that the modules Fj and Fp are alternatively included in
the plan:

zj ∧ zp ∨ hj ∧ hp = 0.

The requirement that the plan is ordered allows one to reduce the search
space essentially during solving the system of Boolean equations given by con-
ditions 1-6, although denying this requirement extends the list of additional
conditions set by the originator of the planning problem. By eliminating the
condition of continuity, one can synthesize plans of length ≤ k. The number of
unknown Boolean variables (the problem dimension) is n2 in a worst case. If the
module set F is very redundant, the problem dimension can be reduced through
a preliminary processing of the solver knowledgebase by forward and backward
search algorithms conventionally used in planning.

As an example, we shall consider the following solver knowledgebase:
KB = {F1(; z1), F2(z6, z7;), F3(z1; z2), F4(z1; z3), F5(z1; z4), F6(z2; z6),

F7(z2, z3; z7), F8(z3, z4; z5), F9(z4; z7), F10(z5; z6)}.
The dependence graph for KB is shown on a Fig. 1. The modules are rep-

resented as circles, parameters – as points. The modules F1 and F2 determine
the statement of the planning problem: parameter z1 is given; it is required to
calculate parameters z6 and z7.

210 G.A. Oparin and A.P. Novopashin

Fig. 1. The dependence graph for KB

In this case, the binary matrices A and B have the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0000000
0000011
1000000
1000000
1000000
0100000
0110000
0011000
0001000
0000100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1000000
0000000
0100000
0010000
0001000
0000010
0000001
0000100
0000001
0000010

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The additional conditions given by the originator of the planning problem
are missing. To solve the system of equations from conditions 1-6, we used the
REBUS Boolean equation solver [4]. The solution method relies on the repre-
sentation of Boolean functions in the left-hand side of equations in the general
form (condition 6 is of this type, and conditions 1-5 are given in the disjunctive
normal form), realizing the technique of chronological backtracking with the use
of Kleene’s three-valued logic.

We found two plans of length 4 (nr.1 and nr.2) and two plans of length 5
(nr.3 and nr.4): nr.1: F1, F3 − F5, F6 − F9, F2;

nr.2: F1, F3 − F4, F6 − F7, F2;
nr.3: F1, F3 − F4 − F5, F7 − F8, F10, F2;
nr.4: F1, F4 − F5, F8 − F9, F10, F2.

There are no plans of different length. The ”−” symbol denotes parallel-
executable modules.

The comparison with different solvers of Boolean equations (or, SAT-solvers;
see, for example, [5]) is complicated by the fact that the initial Boolean const-
raints on them must be in the normal form (in our case, condition 6 is of a

Planning of Parallel Abstract Programs as Boolean Satisfiability 211

general form and its reduction to the disjunctive normal form in the general
case is a hard problem).

4 Boolean Constraints in DNF-Form

If we impose more strict conditions of admissibility and non-redundancy of the
plan, Boolean constraints can be obtained in the disjunctive normal form.

Condition 4.1. The condition that the plan is admissible: for any input pa-
rameter of the plan module, there must be just a single previously encountered
module with the same output parameter. In such a formulation, this condition
ensures that the plan is non-alternative inside and Boolean equation

k
∨

t=2

n
∨

p=1
(xtp ∧ y) = 0

corresponds to it, where

y =

⎧⎪⎪⎨⎪⎪⎩
∨

q∈Ap

(
l−1
∨

r=1

l
∨

s=r+1
(zr ∧ zs) ∨

l
∧

r=1
zr), if (Ap
= 0) ∧ ((∀q ∈ Ap)(B′

q
= 0));

1, if (Ap
= 0) ∧ ((∃ q ∈ Ap)(B′
q = 0));

0, if Ap = 0.

The symbol z denotes an array of length l of the matrix X , which is formed
for each q ∈ Ap in the following way:

z =
{
xij : i = 1, t− 1, j ∈ B′

q

}
.

Condition 6.1. Then, in view of 4.1., the non-redundancy condition can be
formulated in the following way: each module of the plan includes (at least one)
output parameter being input for at least a single module, encountered later in
the plan. In this case, Boolean constraint has the form:

k−1
∨

t=1

n
∨

p=1
(xtp ∧ w) = 0,

where

w =

⎧⎨⎩ ∧
q∈Bp

k
∧

i=t+1
∧

j∈A′
q

xij , if Bp
= 0 ;

1, if Bp = 0.

As an example, we shall consider the following solver knowledgebase:
KB1 = {F1(; z1), F2(z6;), F3(z1; z2, z3), F4(z1; z3, z4), F5(z3; z5),

F6(z2, z4, z5; z6)}.
In this case, the binary matrices A and B have the form:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
000000
000001
100000
100000
001000
010110

⎤⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎣
100000
000000
011000
001100
000010
000001

⎤⎥⎥⎥⎥⎥⎥⎦ .

212 G.A. Oparin and A.P. Novopashin

Fig. 2. The dependence graph for KB1

The dependence graph for KB1 is shown on a Fig. 2.
There is a single plan for the problem solving (F1,F3 − F4,F5,F6,F2), which

satisfies conditions 1-6. However, no plans will be found if more strict const-
raints 4.1 and 6.1 (instead of 4 and 6) are used. These conditions eliminate
the possibility to calculate the parameter z3 by two alternative ways (either F3

or F4).

5 Boolean Modeling with Resource Constraints

In this section we shall consider a case, when all processors are identical and
number of processors is limited by pr. Each module can be executed on any
processor. Time of execution τj of the module Fj ∈ F is discrete value: τj ∈
N = {1, 2, ...}. Time of data transmission from one processor to another is
ignored. The processor can execute only one module at each moment of time.
The general directory period of the problem solving k ∈ N is set. It is required
to construct the asynchronous plan which length is equal to the given value k or
does not exceed it.

To allow for time delays at execution of modules (τj) it is necessary to modify
two conditions (continuity (2) and admissibility (4)) and to exclude the condition
5 (orderliness of the plan) from system of Boolean constraints.

Condition 2.1. The plan should be continuous (with time delays at execution
of modules):

k−1
∨

t=2

n
∧

j=1

t
∧

i=t−τj+1
x̄ij = 0.

Here τj (j = 1, n) - the execution time of moduleFj . When τj = 1 for all j we
have equivalence i = t, i.e. condition 2.

Condition 4.2. The condition that the plan is admissible (with time delays
at execution of modules):

k
∨

t=2

n
∨

p=1
(xtp ∧ y) = 0,

where

Planning of Parallel Abstract Programs as Boolean Satisfiability 213

y =

⎧⎪⎪⎨⎪⎪⎩
∨

q∈Ap

∧
j∈B′

q

t−τj

∧
i=1

x̄ij , if (Ap
= 0) ∧ ((∀q ∈ Ap)(B′
q
= 0));

1, if (Ap
= 0) ∧ ((∃ q ∈ Ap)(B′
q = 0));

0, if Ap = 0.

To allow for number of accessible processors (pr) it is necessary to incorporate
additional constraints.

Condition 7. The constraint on number of processors, assigned for solving
the problem T . This condition allows us to find plans for pr processors without
taking into account delays.

k−1
∨

t=2
(∨
1≤j1≤j2≤...≤jpr+1≤n

(xt,j1 ∧ xt,j2 ∧ . . . ∧ xt,jpr+1))∨

∨
k−1
∧

t=2
(∨
1≤j1≤j2≤...≤jn−pr+1≤n

(x̄t,j1 ∧ x̄t,j2 ∧ . . . ∧ x̄t,jn−pr+1)) = 0.

Condition 7.1. The constraint on number of processors with time delays at
execution of modules:

k−1
∨

t=2
(∨
1≤j1≤j2≤...≤jpr+1≤n

(
t
∨

i=t−τj1+1
xi,j1∧

∧
t
∨

i=t−τj2+1
xi,j2 ∧ . . . ∧

t
∨

i=t−τjpr+1+1
xi,jpr+1))∨

∨
k−1
∧

t=2
(∨
1≤j1≤j2≤...≤jn−pr+1≤n

(
t
∧

i=t−τj1+1
x̄i,j1∧

∧
t
∧

i=t−τj2+1
x̄i,j2 ∧ . . . ∧

t
∧

i=t−τjn−pr+1+1
x̄i,jn−pr+1)) = 0.

For example, we shall consider the following solver knowledgebase:
KB2 = {F1(; z1), F2(z4, z5;), F3(z1; z2), F4(z1; z3), F5(z1; z5), F6(z2, z3; z4)}.
In this case, the binary matrices A and B have the form:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
000000
000110
100000
100000
100000
011000

⎤⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎣
100000
000000
010000
001000
000010
000100

⎤⎥⎥⎥⎥⎥⎥⎦ .

The dependence graph for KB2 is shown on a Fig. 3 .
The single problem solving plan is found when the resource constraints are

absent (with constraints 1-6):
F1, F3 − F4 − F5, F6, F2.
Let us define number of accessible processors pr = 2 and time delays at

execution of modules τj = 1 (j = 1, n). Boolean equations system which consists
of constraints 1, 2, 3, 4, 6 and 7 is solved by REBUS. As a result 10 synchronous
plans are found: 1 plan of length 4 (nr.1) and 9 plans of length 5 (nr.3 – nr.10):

214 G.A. Oparin and A.P. Novopashin

Fig. 3. The dependence graph for KB2

nr.1: F1, F3 − F4, F5 − F6, F2;
nr.2: F1, F3 − F4, F5, F6, F2;
nr.3: F1, F3 − F4, F6, F5, F2;
nr.4: F1, F3 − F5, F4, F6, F2;
nr.5: F1, F3, F4 − F5, F6, F2;
nr.6: F1, F3, F4, F5 − F6, F2;
nr.7: F1, F4 − F5, F3, F6, F2;
nr.8: F1, F4, F3 − F5, F6, F2;
nr.9: F1, F4, F3, F5 − F6, F2;
nr.10: F1, F5, F3 − F4, F6, F2.
To allow for time delays we shall replace condition 2 (continuity of the plan),

condition 4 (admissibility of the plan) and condition 7 (on number of accessible
processors) by constraints 2.1, 4.2 and 7.1 respectively.

Let us define time delays at execution of modules τ3 = 3 (for F3), τ5 = 4
(for F5) and τj = 1 (for others). Boolean equations system which consists of
constraints 1, 2.1, 3, 4.2, 6 and 7 is solved. As a result 6/21/35/29 asynchronous
plans of length 7/8/9/10 are found. In the set of the solutions we shall consider
three plans:

A. F1, F3 − F4, F+
3 , F+

3 , F5 − F6, F+
5 , F+

5 , F+
5 , F2;

B. F1, F3 − F4, F+
3 − F5, F+

3 − F+
5 , F6 − F+

5 , F+
5 , F2;

C. F1, F3 − F4, F+
3 − F5, F+

3 − F+
5 , F+

5 , F6 − F+
5 , F2.

The symbol ”+” denotes continuation of the module execution.
Analysis of the result shows: the plan A corresponds to the plan nr.1 (when

τ3 = τ5 = 1) from above-stated list of 10 plans. Similarly, the plan B and the plan
C correspond to the plan nr.2. The length of the plan nr.1 is equal 4, length of
the plan nr.2 – 5. The situation changes when we take into account time delays:
the plan A is realized at 9 steps, B and C – at 7 steps. Clearly, B and C are
preferable as they have smaller length and more effectively load processors of
the parallel computing system.

Planning of Parallel Abstract Programs as Boolean Satisfiability 215

6 Conclusion

A new formulation was given for the problem of constructing asynchronous action
plans in parallel computing systems. In addition we took into account time
delays at execution of modules, constraint on number of accessible processors,
constraint on a length of the plan. Time of data transmission between modules
was ignored. Boolean model for constructing successive plans of a given length in
mediator systems, realizing structural data requests on the Internet is considered
in [6]. In the related work [7] Boolean model for constructing parallel synchronous
plans of action for organization the distributed computing in Internet is offered
by authors. A comparative analysis shows, that the requirements to the plan
parallelism and asynchronism and other constraints make the model significantly
difficult, which gives no way of using well-known SAT-solvers oriented to the
fact that Boolean constraints are in the normal form. Boolean equation solver
REBUS is efficient enough to be applied in declarative languages and systems
of the parallel modular programming.

References

1. Valkovskii, V., Malyshkin, V.: Parallel Programs and Systems Synthesis on the basis
of Computational Models. Nauka, Novosibirsk (1988) 129

2. Oparin, G.A., Feoktistov, A.G.: Instrumental’naya raspredelennaya vychislitel’naya
SATURN-sreda. Program. Prod. Sist., No. 2 (2002) 27–30 [in Russian]

3. Kautz, H., Selman, B.: Planning as Satisfiability. In: Proceedings of the 10th Euro-
pean Conference on Artificial Intelligence (ECAI) (1992) 359–363

4. Oparin, G.A., Bogdanova, V.G.: Algoritmy resheniya bol’shikh razrezhennykh sis-
tem bulevykh uravnenii. Metody optimizatsii i ikh prilozheniya: Tr. 12-i Baikal’skoi
mezhdunar. konf. Sektsiya 5. Diskretnaya matematika. IGU, Irkutsk (2001) 114–118
[in Russian]

5. Simon, L.: The experimentation web site around the satisfiability problem.
[http://www.lri.fr/ simon/satex/satex.php3]

6. Prestwich, S., Bressan, S.: A SAT Approach to Query Optimization in Mediator
Systems. In: Proceedings of the Fifth International Symposium on the Theory and
Applications of Satisfiability Testing, University of Cincinnati (2002) 252–259

7. Oparin, G.A., Novopashin, A.P.: Boolevo modelirovanie planirovaniya deystvii v
raspedelennykh vychislitel’nykh systemakh. Izvestia RAN, Teoria i systemy up-
ravleniya, No. 5 (2004) 105–108 [in Russian]

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 216 – 225, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient Communication Scheduling Methods for
Irregular Data Redistribution in Parallelizing Compilers1

Shih-Chang Chen1, Ching-Hsien Hsu1,*, Chao-Yang Lan1,
Chao-Tung Yang2, and Kuan-Ching Li3

1 Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu 300 Taiwan

chh@chu.edu.tw
2 Department of Computer Science and Information Engineering,

Tunghai University, Taichung 40704 Taiwan
ctyang@mail.thu.edu.tw

3 Department of Computer Science and Information Management,
Providence University, Taichung 43301 Taiwan

kuancli@pu.edu.tw

Abstract. Irregular array redistribution has been paid attention recently since it can
distribute different size of data segment to processors according to their own
computation ability. It’s also the reason why it has been kept an eye on load balance.
In this work, we present a two-phase degree-reduction (TPDR) method for
scheduling HPF2 irregular data redistribution. An extended algorithm based on
TPDR is also presented. Effectiveness of the proposed methods not only avoids
node contention but also shortens the overall communication length. To evaluate
the performance of our methods, we have implemented both algorithms along with
the divide-and-conquer algorithm. The simulation results show improvement of
communication costs.

1 Introduction
In order to achieve a good performance of load balancing, using an appropriate data
distribution scheme when processing different phase of application is necessary. In
general, data distribution can be classified into regular and irregular. The regular
distribution usually employs BLOCK, CYCLIC, or BLOCK-CYCLIC(c) to specify
array decomposition. The irregular distribution uses user-defined functions to specify
unevenly array distribution.

To map unequal sized continuous segments of array onto processors, High
Performance Fortran version 2 (HPF2) provides GEN_BLOCK distribution format
which facilitates generalized block distributions. GEN_BLOCK allows unequal sized
data segments of an array to be mapped onto processors. This makes it possible to let
different processors dealing with appropriate data quantity according to their
computation ability.

1 This research is supported partially by National Science Council, Taiwan, under grant number

NSC-93-2213-E-216-029.
* The correspondence address.

 Efficient Communication Scheduling Methods 217

In some algorithms, an array distribution that is well-suited for one phase may not be
good for a subsequent phase in terms of performance. Array redistribution is needed
when applications running from one sub-algorithm to another during run-time.
Therefore, many data parallel programming languages support run-time primitives for
changing a program’s array decomposition. Efficient methods for performing array
redistribution are of great importance for the development of distributed memory
compilers for those languages.

In this paper, we present a two-phase degree reduction (TPDR) algorithm to
efficiently perform GEN_BLOCK array redistribution. Communication scheduling is
one of the most important issues on developing runtime array redistribution techniques.
The main idea of the two-phase degree reduction method is to schedules
communications of processors that with degree (number of communication messages)
greater than two in the first phase (named degree reduction phase). A communication
step will be scheduled after performing one of the serial degree-reduction iterations.
The second phase (named coloring phase) schedules all messages of processors that
with degree-2 and degree-1 using an adjustable coloring mechanism. Based on the
TPDR method, we also present an extended TPDR algorithm (E-TPDR).

The rest of this paper is organized as follows. In Section 2, a brief survey of related
work will be presented. In section 3, we will introduce an example of GEN_BLOCK
array redistribution as preliminary. Section 4 presents two communication scheduling
algorithms for irregular redistribution problem. The performance analysis and
simulation results will be presented in section 5. Finally, the conclusions will be given
in section 6.

2 Related Work

Techniques for regular array redistribution, in general, can be classified into two
approaches: the communication sets identification techniques and communication
optimizations. The former includes the PITFALLS [14] and the ScaLAPACK [13]
methods for index sets generation; Park et al. [11] devised algorithms for
BLOCK-CYCLIC Data redistribution between processor sets; Dongarra et al. [12]
proposed algorithmic redistribution methods for BLOCK-CYCLIC decompositions;
Zapata et al. [1] proposed parallel sparse redistribution code for BLOCK-CYCLIC data
redistribution based on CRS structure. The Generalized Basic-Cycle Calculation
method was presented in [3].

Techniques for communication optimizations category, in general, provide different
approaches to reduce the communication overheads in a redistribution operation.
Examples are the processor mapping techniques [7, 9, 4] for minimizing data
transmission overheads, the multiphase redistribution strategy [8] for reducing message
startup cost, the communication scheduling approaches [2, 5, 10, 18] for avoiding node
contention and the strip mining approach [15] for overlapping communication and
computational overheads.

On irregular array redistribution, Guo et al. [6] presented a symbolic analysis
method for communication set generation and to reduce communication cost of

218 S.-C. Chen et al.

irregular array redistribution. On communication efficiency, Lee et al. [9] presented a
logical processor reordering algorithm on irregular array redistribution. Four
algorithms were discussed in this work for reducing communication cost. Guo et al.
[16, 17] proposed a divide-and-conquer algorithm for performing irregular array
redistribution. In this method, communication messages are first divided into groups
using Neighbor Message Set (NMS), messages have the same sender or receiver; the
communication steps will be scheduled after those NMSs are merged according to the
relationship of contention. In [18], a relocation algorithm was proposed by Yook and
Park. The relocation algorithm consists of two scheduling phases, the list scheduling
phase and the relocation phase. The list scheduling phase sorts global messages and
allocates them into communication steps in decreasing order. Because of conventional
sorting operation, list scheduling indeed performs well in term of algorithmic
complexity. If a contention happened, the relocation phase will perform a serial of
re-schedule operations. While algorithm flow goes to the relocation phase, it has to
allocate an appropriate location for the messages that can’t be scheduled at that
moment. This leads to high scheduling overheads and degrades the performance of a
redistribution algorithm.

3 Preliminaries

A bipartite graph G = (V, E) is used to represent the communications of an irregular
array redistribution on A[1:N] over P processors. Vertices in G are used to represent the
source and destination processors. Edge eij in G denotes the message sent from source
processor SPi to destination processor DPj, where eij ∈ E. |E| is the total number of
communication messages through the redistribution.

Unlike regular problem, there is no repetition communication pattern in irregular
GEN_BLOCK array redistribution. It is also noticed that if SPi sends messages to DPj-1
and DPj+1, the communication between SPi and DPj must exist, where 0≤ i, j ≤ P-1. This
result was mentioned as the consecutive communication property [9]. Figure 1(a)
shows an example of redistributing two GEN_BLOCK distributions on a n array
A[1:100]. Distributions I and II are mapped to source processors and destination
processors, respectively. The communications between source and destination
processor sets are depicted in Figure 1(b). There are totally eleven communication
messages (|E|=11), m1, m2, m3…, m11 among processors involved in the redistribution.
In general, to avoid conflict communication or node contention, a processor can only
send one message to destination processors at a communication step. Similarly, one can
only receive a message from source processors at any communication step. Figure 1(c)
shows a simple schedule for this example.

4 Scheduling Algorithms of GEN_BLOCK Redistribution

The communication time depends on total number of communication steps and the
length of these steps. In general, the message startup cost is proportional to the number
of communication steps. The length of these steps determines the data transmission

 Efficient Communication Scheduling Methods 219

overheads. A minimal steps scheduling can be obtained using the coloring mechanism.
However, there are two drawbacks in this method; first, it can not minimize total size of
communication steps; second, the graph coloring algorithmic complexity is often high.
In the following subsections, we will present two low complexity and high availability
scheduling methods.

Fig. 1. An example of irregular array redistribution. (a) The source and destination distributions.
(b) Bipartite communications. (c) Simple schedule

4.1 The Two-Phase Degree Reduction Method

The Two-Phase Degree Reduction (TPDR) method consists of two parts. The first part
schedules communications of processors with degree greater than two. In a bipartite
graph representation, the TPDR reduces the degree of vertices with maximum degree
by one every reduction iteration. The second part schedules all messages of processors
that with degree-2 and degree-1 using an adjustable coloring mechanism. The degree
reduction is performed as follows.

Step1: Sort the vertices that with maximum degree d by total size of messages in
decreasing order. Assume there are k nodes with degree d. The sorted vertices would
be <Vi1, Vi2, …, Vik>.

Step2: Schedule the minimum message mj = min{m1, m2, …, md} into step d for
vertices Vi1, Vi2, …, Vik, where 1 ≤ j ≤ d.

Step3: Maximum degree d = d-1. Repeat Steps 1 and 2.
Figure 2(a) shows an example of initial communication patterns. The

redistribution is carried out over seven processors with maximum degree 3. Therefore,
the communications can be scheduled in three steps. According to the above
description in step 1, there are two nodes with degree 3, SP6 and DP1. The total message
size of SP6 (36) is greater than DP1 (14). Thus, SP6 is the first candidate to select a

220 S.-C. Chen et al.

minimum message (m11) of it into step 3. A similar selection is then performed on DP1.
Since m5 is the minimum message of DP1 at present, therefore, m5 is scheduled into step
3 as well. As messages m11 and m5 are removed from the bipartite graph, adjacent nodes
of edges m11 and m5, i.e., SP6, DP4, DP1 and SP3 should update their total message size.
After the degree reduction iteration, the maximum degree of the bipartite graph will
become 2. Figure 2(b) shows this scenario. Figures 2(c) and 2(d) show the similar
process of above on degree = 2 bipartite graph. In Figure 2(c), vertices SP6, SP5, SP4,
SP1, DP3, DP2, DP1 and DP0 have the maximum degree 2 and are candidates to
schedule their messages into step 2. According to the degree reduction method, m12, m10
and m7 are scheduled in order. The next message to be selected is m8. However, both
messages of DP3 will result node contention (one with SP4 and one with SP5) if we are
going to schedule one of DP3’s messages. This means that the degree reduction method
might not reduce degree-2 edges completely when the degree is 2.

Fig. 2. The process of degree reduction (a) initial bipartition communications. (b) SP6 and DP1
have the maximum degree 3, m11 and m5 are scheduled. Total message size of adjacent nodes of
edges m11 and m5 (SP6, DP4, DP1 and SP3) should be updated. (c) m11 and m5 are removed from
the bipartite graph. The maximum degree is 2 after degree reduction. SP6, SP5, SP4, SP1, DP3,
DP2, DP1 and DP0 have the maximum degree 2, they are marked blue. (d) m12, m10, m7, m2 and
m4 are scheduled. Adjacent nodes of edges m12, m10, m7, m2 and m4 (SP6, DP5, SP5, DP4, DP2,
SP4,…) should be updated. After remove messages m7 and m10, the degree of DP3 can’t be
reduced

To avoid the above situation, an adjustable coloring mechanism to schedule
degree-2 and degree-1 communications in bipartite graph can be applied. Since the

 Efficient Communication Scheduling Methods 221

consecutive edges must be scheduled into two steps, there is no need to care about the
size of messages. That means we don’t have to schedule the large messages together on
purpose.

Let’s consider again the example in Figure 2(c). Figure 3 demonstrates scheduling
of the coloring phase for communication steps 1 and 2. To facilitate our illustration, we
denote each connected component in G’ as a Consecutive Section (CS). In Figure 3,
there are three Consecutive Sections, the CS1 is consisted of four messages m1, m2, m3
and m4; the CS2 is consisted of five messages m6, m7, m8, m9 and m10; the CS3 is
consisted of two messages m12 and m13. A simple coloring scheme is to use two colors
on adjacency edges alternatively. For example, we first color m1, m6 and m12 red; then,
color m2, m7 and m13 blue; and so on. The scheduling results for CS1 and CS2 are shown
in row 1 and row 2 beside the bipartite graph. Row 3 shows the merging result of CS1
with CS2 and the schedule of CS3. In row 3, messages m6 (15) and m13 (18) dominate
the communication time at steps 1 and 2, respectively. This results total
communication cost = 33. If we change the order of steps 1 and 2 in CS3, it becomes
m13 dominates the communication time in step 1 and m12 dominates the communication
time in step 2. This will result total communication cost = 30. Therefore, the colors of
two steps in CS3 are exchanged in Row 3 for less communication cost. Row 4 shows
communication scheduling of the adjustable coloring phase for degree-2 and degree-1
communications.

Fig. 3. Adjustable coloring mechanism for scheduling degree-2 and degree 1 communications

4.2 Extended TPDR

Based on TPDR, we present an extended two-phase degree reduction (E-TPDR)
algorithm in this subsection. An edge-complement operation is added in the
degree-reduction phase. As the TPDR algorithm stated, the original degree-reduction
operation only schedules degree-k nodes’ messages into communication step k. This
might not fully utilize the available space in step k and remains heavy communications
in the previous steps (less than k). Therefore, a principle for adding extra messages into
these steps is to select the maximum message that is smaller than the length of current
step and with un-marked adjacent vertices.

222 S.-C. Chen et al.

The key concept of this modification is to schedule messages into communication
steps during reduction phase as many as possible into the existing communication
steps. Because the additional scheduled messages are with smaller message size than
the current step length, the edge-complement operation will not influence the cost of
original scheduling from TPDR. Figure 4 shows the communication schedule of the
example given in Figure 2 using E-TPDR. Although this example does not reflect lower
total cost of E-TPDR, section 5 will demonstrate the improvement of E-TPDR method
from the simulation results.

 S1: m1(7), m3(7), m6(15), m9(10), m13(18)

S2: m4(4), m7(3), m10(8), m12(12)

S3: m11(6), m5(3), m8(4), m2(3)

Fig. 4. The E-TPDR scheduling of communications for the example in Figure 2

5 Performance Evaluation

To evaluate the performance of the proposed methods, we have implemented the TPDR
and E-TPDR along with the divide-and-conquer algorithm [16]. The performance
simulation is discussed in two classes, even GEN_BLOCK and uneven GEN_BLOCK
distributions. In even GEN_BLOCK distribution, each processor owns similar size of data.
The communication cost will not be dominated by specific processor, because the size of
messages between processors could be very close. In contrast to even distributions, few
processors might be allocated grand volume of data in uneven distributions. Since array
elements could be centralized to some specific processors, it is also possible for those
processors to have the maximum degree of communications. Therefore, the
communication cost will be dominated by these processors. To accomplish an optimal
scheduling, it is obvious that even distribution case is more difficult than uneven
distribution. This observation was comprehended by that communication cost could be
determined by one processor that with maximum degree or maximum total message size
in uneven distribution; consequently, it leads high probability to achieve a schedule that
has the same cost as the processor’s total message size.

To determine the redistribution is on even GEN_BLOCK or uneven GEN_BLOCK, we
define upper and lower bounds of data size in GEN_BLOCK distribution. Given an
irregular array redistribution on A[1:N] over P processors, the average block size will be
N/P. In even distribution, the range of upper and lower bounds is set to ±30%. Thus, size
of data blocks could be 130% N/P ~ 70% N/P. In uneven distribution, the range of upper
and lower bounds is set to ±100%. Thus, size of data blocks could be 200% N/P ~ 1.

5.1 Simulation A – Uneven Distribution

Simulation A is carried out to examine the performance of TPDR and E-TPDR
algorithms on uneven cases. We use a random generator to generate 10,000 test data

 Efficient Communication Scheduling Methods 223

sets. Figure 5(a) shows the comparisons of TPDR algorithm and the
divide-and-conquer (DC) algorithm. We run tests by different processor numbers from
4 to 24. In 10,000 samples, the number of cases of TPDR better than DC, DC better than
TPDR and the same are counted. When the number of processors is 4, there are lots of
cases both algorithms have the same result. This is because that the size of messages
could be larger when number of processors is less. It’s easier to derive schedules that
have minimum size of total communication steps. When the number of processors
becomes numerous, the TPDR provides significant improvements generally. This
phenomenon can be explained by size of data blocks in these processors are relative
small. Therefore, processors have lower possibility to have high degree of
communication links. In other words, the number of degree-2 nodes increases largely.
Since the TPDR uses an optimal adjustable coloring mechanism for scheduling
degree-2 and degree-1 communications, therefore, we expect that TPDR performs
better when the number of degree-2 nodes is large.

Figure 5(b) gives the comparisons of the E-TPDR algorithm and the
divide-and-conquer algorithm. When the number of processors is 4, there are about
60% cases has the same result by both algorithms. Similar to the previous observations,
the E-TPDR performs well when number of processors is numerous.

Fig. 5. Performance achievement of different algorithms in 10,000 GEN_BLOCK test samples

224 S.-C. Chen et al.

5.2 Simulation B – Even Distribution

Simulation B is carried out to examine the performance of TPDR and E-TPDR
algorithms on even cases. We also use the random generator to produce 10,000 data
sets for this test.

Figures 5(c) and 5(d) show the performance comparisons of TPDR and DC, E-TPDR
and DC, respectively. Overall speaking, we have similar observations as those
described in Figures 5(a) and 5(b). The E-TPDR performs better than TPDR. When
number of processors is large, the TPDR and E-TPDR both provide significant
improvements. Compare to the results in uneven cases (simulation A), the ratio of our
algorithms outperform the DC algorithm become lower. In even distribution, we
observed that there is no vertices with degree higher than 4. In other words, the
maximum degree of nodes of these 10,000 test samples is 3. On this aspect, the DC
algorithm and the TPDR methods have more cases that are the same. This is also why
the TPDR and E-TPDR have better ratio from 99% to 93%.

6 Conclusions

In this paper, we have presented a two-phase degree-reduction (TPDR) scheduling
technique to efficiently perform HPF2 irregular array redistribution on distributed
memory multi-computer. The TPDR is a simple method with low algorithmic
complexity to perform GEN_BLOCK array redistribution. An extended algorithm
based on TPDR is also presented. Effectiveness of the proposed methods not only
avoids node contention but also shortens the overall communication length. The
simulation results show improvement of communication costs and high practicability
on different processor hierarchy.

In HPF, it supports array redistribution with arbitrary source and destination
processor sets. The technique developed in this paper assumes that the source and the
destination processor sets are the same. In the future, we will study efficient methods
for array redistribution with arbitrary source and destination processor sets. Besides,
the issues of scheduling irregular problems on grid system and considering network
communication latency in heterogeneous environments are also interesting and will be
investigated. Also, we will also study realistic applications and analyze their
performance.

References

[1] G. Bandera and E.L. Zapata, “Sparse Matrix Block-Cyclic Redistribution,” Proceeding of
IEEE Int'l. Parallel Processing Symposium (IPPS'99), San Juan, Puerto Rico, April 1999.

[2] Frederic Desprez, Jack Dongarra and Antoine Petitet, “Scheduling Block-Cyclic Data
redistribution,” IEEE Trans. on PDS, vol. 9, no. 2, pp. 192-205, Feb. 1998.

[3] C.-H Hsu, S.-W Bai, Y.-C Chung and C.-S Yang, “A Generalized Basic-Cycle Calculation
Method for Efficient Array Redistribution,” IEEE TPDS, vol. 11, no. 12, pp. 1201-1216,
Dec. 2000.

 Efficient Communication Scheduling Methods 225

[4] C.-H Hsu, Dong-Lin Yang, Yeh-Ching Chung and Chyi-Ren Dow, “A Generalized
Processor Mapping Technique for Array Redistribution,” IEEE TPDS, vol. 12, vol. 7, pp.
743-757, July 2001.

[5] Minyi Guo, I. Nakata and Y. Yamashita, “Contention-Free Communication Scheduling for
Array Redistribution,” Parallel Computing, vol. 26, no.8, pp. 1325-1343, 2000.

[6] Minyi Guo, Yi Pan and Zhen Liu, “Symbolic Communication Set Generation for Irregular
Parallel Applications,” The Journal of Supercomputing, vol. 25, pp. 199-214, 2003.

[7] Edgar T. Kalns, and Lionel M. Ni, “Processor Mapping Technique Toward Efficient Data
Redistribution,” IEEE Trans. on PDS, vol. 6, no. 12, December 1995.

[8] S. D. Kaushik, C. H. Huang, J. Ramanujam and P. Sadayappan, “Multiphase data
redistribution: Modeling and evaluation,” Proceeding of IPPS’95, pp. 441-445, 1995.

[9] S. Lee, H. Yook, M. Koo and M. Park, “Processor reordering algorithms toward efficient
GEN_BLOCK redistribution,” Proceedings of the ACM symposium on Applied computing,
2001.

[10] Y. W. Lim, Prashanth B. Bhat and Viktor and K. Prasanna, “Efficient Algorithms for
Block-Cyclic Redistribution of Arrays,” Algorithmica, vol. 24, no. 3-4, pp. 298-330, 1999.

[11] Neungsoo Park, Viktor K. Prasanna and Cauligi S. Raghavendra, “Efficient Algorithms for
Block-Cyclic Data redistribution Between Processor Sets,” IEEE TPDS, vol. 10, No. 12,
pp.1217-1240, Dec. 1999.

[12] Antoine P. Petitet and Jack J. Dongarra, “Algorithmic Redistribution Methods for
Block-Cyclic Decompositions,” IEEE Trans. on PDS, vol. 10, no. 12, pp. 1201-1216, Dec.
1999.

[13] L. Prylli and B. Touranchean, “Fast runtime block cyclic data redistribution on
multiprocessors,” Journal of Parallel and Distributed Computing, vol. 45, pp. 63-72, Aug.
1997.

[14] S. Ramaswamy, B. Simons, and P. Banerjee, “Optimization for Efficient Data
redistribution on Distributed Memory Multicomputers,” Journal of Parallel and
Distributed Computing, vol. 38, pp. 217-228, 1996.

[15] Akiyoshi Wakatani and Michael Wolfe, “Optimization of Data redistribution for
Distributed Memory Multicomputers,” short communication, Parallel Computing, vol. 21,
no. 9, pp. 1485-1490, September 1995.

[16] Hui Wang, Minyi Guo and Daming Wei, "Divide-and-conquer Algorithm for Irregular
Redistributions in Parallelizing Compilers”, The Journal of Supercomputing, vol. 29, no. 2,
2004.

[17] Hui Wang, Minyi Guo and Wenxi Chen, “An Efficient Algorithm for Irregular
Redistribution in Parallelizing Compilers,” Proceedings of 2003 International Symposium
on Parallel and Distributed Processing with Applications, LNCS 2745, 2003.

[18] H.-G. Yook and Myung-Soon Park, “Scheduling GEN_BLOCK Array Redistribution,”
Proceedings of the IASTED International Conference Parallel and Distributed Computing
and Systems, November, 1999.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 226 – 238, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Online Virtual Disk Migration with Performance
Guarantees in a Shared Storage Environment

Yong Feng, Yan-yuan Zhang, Rui-yong Jia, and Xiao Zhang

Computer Science & Engineering School, Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, P. R. China

{fengyong, zhangyy, jiary, zhangxiao}@co-think.com

Abstract. In this paper, we present a novel approach of online virtual disk
migration with performance guarantees, which is important for storage
maintenance tasks. Our approach can be applied to moving virtual disk and
exchanging virtual disks. It identifies the surplus I/O resource of storage pools
after satisfying performance requirement of virtual disks with EPYFQ
scheduling algorithm, and gives high priority of using these I/O resource to
migration tasks. Thus, the performance of virtual disks is guaranteed during
migration, and the migration is completed in the shortest possible time.
Moreover, our approach divides migration task into multiple storage
transactions, which can protect the consistency of the data in the migrated
virtual disks when application I/O and migration I/O execute concurrently. We
implement our approach into E-DM, a kernel module of Linux, and evaluate it.
The result shows that the IOPS of virtual disks is decreased not more than 3%
during migration.

1 Introduction

The consolidation of the storage systems that are connected by a dedicated storage
network, called SAN (Storage Area Network), makes it possible to manage more and
more data with fewer people. Moreover, to use storage resource efficiently, a new
abstraction layer between host view and storage system implementation, called
storage virtualization, is introduced. This software makes a transformation between a
logical address space that is presented to the servers and the access to the physical
storage devices.

With these trends in storage technologies, a shared storage model is now widely
accepted in storage management [1]. In a shared storage environment, it is possible to
use the available storage resource (Without loss of generality we refer to processor,
physical disk, cache, bandwidth etc. as storage resource) of the storage systems as one
or more storage pools. Virtual disks are built from these storage pools without
worrying about the limitations of the underlying hardware, such as physical disks.
From the standpoint of virtual disk consumer, virtual disk is highly desired to be as
concrete as physical disks, implying that it demands to have a guaranteed storage
service, especially I/O performance, at all times. To meet the requirement, some
storage virtualization systems are designed to provide performance guarantees for
virtual disks [2,3,4,5].

 Online Virtual Disk Migration with Performance Guarantees 227

Keeping such systems operating in the face of changing access patterns, new
applications, equipment failures, new resource, the needs to balance loads to achieve
acceptable performance requires migrating virtual disks between storage pools.
Existing approaches to migrating virtual disks are seldom designed with performance
guarantees in mind. The I/O resource consumption engendered by the migration
process will interfere with foreground application accesses and show them down. It
will destroy the performance guarantees of virtual disk provided by storage
virtualization systems.

This paper explores our approach to the problem of how to maintain performance
guarantees for virtual disks during virtual disks migration, and aims at the following
objectives.

Online: Today’s applications can not tolerant the downtime of storage system. Thus,
the migrated virtual disk should be accessed by applications in parallel with the
migration.

Performance guarantees: The virtual disk with performance guarantees has similar
performance characteristics as physical disk, such as Bandwidth and IOPS. These
performance characteristics should be met while migration takes place.

Short migration time: After satisfying the above two objectives, the migration is
desired to complete in the shortest possible time.

We implement our approach into the E-DM (Enhanced Device Mapper) [5], a
kernel module of Linux that provides logic volume management service with
performance guarantees, and evaluate it using synthesized I/O load generated by
Iometer [6]. The remainder of this paper is organized as follows: Section 2 describes
some related works. Section 3 explains how our approach guarantees the I/O resource
necessary to meet the performance requirements of virtual disks. Section 4 explains
how our approach protects the consistency of the data in the migrated virtual disks
when the application I/O and the migration I/O execute concurrently. Section 5 gives
some comments about the current implementation of our approach. After present the
results of our experimental evaluation in section 6, the conclusion will be drawn in the
seventh section.

2 Related Works

Currently, some logical volume managers, such as LVM [7], VxVM [8], are able to
provide continuing access to volume while it is being moved. This is achieved by
creating a mirror of the volume to be moved, with the new replica in the place where
the volume is to end up. The mirror is made consistent by bringing the new copy up to
date. After the mirror is completed, the original copy can be disconnected and
discarded. This trick is also used by other migration tools, such as Aqueduct [9].
However, they cannot achieve continuing access during exchanging two virtual disks
with one virtual disk in the place where the other virtual disk originally resides. Our
approach can provide continuing access not only when moving virtual disk, but also
when exchanging virtual disks.

In order to avoid the impact of migration on the performance of virtual disks, it is
best choice to migrate virtual disks when storage system is nearly idle. Therefore,

228 Y. Feng et al.

former storage administrators usually chose to perform migration tasks at night for the
workload is low at that time. However, as for current worldwide applications, such as
WWW and e-business, the workloads are not bound by time zone any more. Then
storage administrators want the ability to control the workload of migration. VxVM
provides limited support through a parameter vol_default_iodelay, which can be used
to throttle the I/O operation of migration. Some high-end disk arrays (e.g. NEC S4300
[10]) provide the similar function. Unfortunately, they leave the problem, how to
adjust the control parameter according to current workload of applications, to storage
administrators.

Aqueduct uses a feedback method to realize an automatic throttling system, which
takes the place of storage administrators to adjust the workload of migration through
forecasting the change of application workload. The effect of Aqueduct is influenced
by many factors, such as parameters of feedback control algorithm, sample interval,
and so on. Storage administrators still need to adjust these parameters according to
different applications and storage devices, which is also a hard work. Furthermore,
Aqueduct only puts the performance requirement of the virtual disks in the source
storage pool into consideration, and ignores the performance requirement of the
virtual disks in the target storage pool. However, they are both important.

The scheduler of storage system has the knowledge of current workload of
applications and need not to forecast them. Eno Thereska et al. present a free-block
scheduling algorithm for disk maintenance applications [11], which predicts rotational
latency delays and tries to fill them with media transfers for disk maintenance
applications. Unfortunately, storage pool is different from disks. We have no priori
knowledge of the internal structure of storage pool, thus cannot predict rotational
latency delays. In COMFORT file system [12], only when disk is idle, the hot data
block can be transferred to cool disk for load balance purpose. However a storage
pool is shared by many virtual disks, it is impossible that all these virtual disks are
idle simultaneously. Therefore we need a method to know whether there is a virtual
disk whose workload is below its performance requirement and what is the difference
between them.

3 I/O Resource Allocation

The performance provided by virtual disk depends on consumed I/O resource. Based
on the following three points, our approach can guarantee the I/O resource virtual
disks required to meet their performance requirement and leave as much I/O resource
as possible to virtual disk migration.

Firstly, to guarantee the performance of virtual disks in the storage pools involved
in migration, our approach uses EPYFQ scheduling algorithm [5], which is designed
to provide performance virtualization in a shared storage environment, to correctly
identify the amount of I/O resource, which should be allocated to virtual disks
currently to meet their performance requirement, and assign the surplus to virtual
disks migration.

Secondly, to guarantee the performance of the migrated virtual disks, our approach
spreads the workload of migrated virtual disks to both source storage pool and target

 Online Virtual Disk Migration with Performance Guarantees 229

storage pool, and then dynamically allocates I/O resource to the migrated virtual disks
from the two storage pools with migration going on.

Thirdly, to reduce the I/O resource used by migration, our approach enables some
I/O operations of foreground applications to execute virtual disk migration.

The following three subsections will explain these points respectively in details.

3.1 Stealing Free I/O Resource

EPYFQ is the core technology of our storage management system with performance
guarantees. Assuming that to meet the performance requirement, virtual disk i is
assigned a share of I/O resource si and the total I/O resource of the storage pool is s,
EPYFQ can allocate at least si/s of the I/O resource of the storage pool to virtual disk
i. Moreover if the load of a virtual disk is below its share, EPYFQ will reallocate the
spare storage resource from it to other overloaded virtual disks. Now, we will give the
brief description of EPYFQ.

In our storage management system, every virtual disk has an input queue, and the
storage pool has an execute queue. EPYFQ associates a start tag Si and a finish tag Fi
with the input queue qi of the virtual disk VDi, and also associates a tag E with the
execute queue qe. Si, Fi and E are all initially zero. The virtual work function, v(t), of
EPYFQ is defined as:

()
()

=
=

inactiveispoolstorage

activeispoolstorage

0t

if

if

if

Fmax

E

0

tv

i

 (1)

Here, the storage pool is active if there are requests being serviced in execute
queue; otherwise, it is inactive.

When a new request towards VDi arrives: Firstly, if qi was previously empty,
EPYFQ calculates Si and Fi with formula (2).

()()
()n

iiii

ii

reSF

F,tvmaxS

+=

=
 (2)

Here, ei() is the virtual service time of request in VDi. Secondly, EPYFQ
appends to qi.

If the number of requests in the execute queue is less than p, which is the max
number of outstanding requests we prescribed in the execute queue, and there are
requests waiting in the input queues of virtual disks, EPYFQ selects the request at
the head of the non-empty qi of VDi, which meets the conditions list in formula (3)
until the number of requests in the execute queue equals to p, or there is no request
meets the conditions.

(){ }

()
() () ()()

() ()+−

−+−
≤∈∀

∈=

∈ e
t qr

t

jjjj
n

ij

jji

retv

F,tvmaxrere
re,UVD

SVD|FminF

ε
 (3)

n
ir

n
ir

n
ir

n
ir

n
ir

230 Y. Feng et al.

Here, S is the set of all virtual disks; U is the set of the virtual disk whose input
queue is empty; ej() and e() are average values of virtual service times of a request
in VDj and in storage pool respectively, which can be measured with run-time
performance monitor; is a positive value, which can be used as a tradeoff between
tight resource control and storage pool resource utilization. The bigger allows more
requests to execute concurrently, however the smaller makes scheduler reserve more
resource for underloaded virtual disks.

When is selected, EPYFQ removes from qi and attaches the current value of Fi
to as . If qi is still non-empty, EPYFQ recalculates Si and Fi with formula (2).
When is completed, EPYFQ recalculates E with formula (4).

(){ }e
n

i
n

i qr|FminE ∈= (4)

Since EPYFQ can reallocates the spare storage resource from the underloaded
virtual disks to overloaded virtual disks, if we give high priority of using spare I/O
resource to virtual disk migration, the migration will do no harm to the performance
of virtual disks.

In EPYFQ, v(t) can identify the spare I/O resource. For virtual disk VDi, the
difference between v(t) and its finish tag Fi is the amount of I/O resource it left. Thus
formula (5) gives the condition when the I/O operation of migration executes.

() ()() ⊂
=

−≤
∈

SK

SK

if

if
Ftvre

true

KVD
imigrate

i

 (5)

Here, K is the set of virtual disks whose finish tag is smaller than v(t); S is the set
of all virtual disks; e(rmigrate) is the virtual service time of a migration request in the
storage pool.

To avoid that the spare I/O resource is used repeatedly, after a migration request is
dispatched, the finish tags of virtual disks in S should be added by e(rmigrate), but the
added finish tag is limited under the current value of v(t).

3.2 Allocating I/O Resource for Migrated Virtual Disk

Usually, the cause of migration is that the source storage pool cannot afford the
performance requirement of its virtual disks. Moving a virtual disk to other
underloaded storage pool will address the problem. However if there is no storage
pool can afford a whole virtual disk, we can only exchange a virtual disk with heavy
load in the overloaded storage pool for a virtual disk with light load in the
underloaded storage pool, and there is a precondition that the two virtual disks must
have the same capacity. Unfortunately the former migration approaches through
creating a mirror of virtual disk cannot use the spare I/O resource of the target storage
pool until the migration is completed, and cannot be applied to exchanging virtual
disks either.

Our approach can eliminate these drawbacks. In our approach, a bitmap, named
MST (the abbreviation for Migration State Table), is used to mark the current
migration state of chunks (a group of data blocks) of the migrated virtual disk. Every
chunk has a bit in MST: 0 means the chunk has not been migrated, whereas 1 means

jr jr

n
ir

n
ir

n
ir

n
iF

n
ir

 Online Virtual Disk Migration with Performance Guarantees 231

the chunk has been migrated. When a request towards the migrated virtual disk
comes, if the migration state of the target chunk is 0, the request will be sent to the
source storage pool, but if the migration state of the target chunk is 1, the request will
be sent to the target storage pool. Thus the workload of migrated blocks will be
transferred to the target storage pool, which is underloaded.

Similarly, when exchanging virtual disks, the MST can be used to mark the
migration state of chunks of both virtual disks simultaneously. In that case, the chunk
with the same offset in the exchanged virtual disks has the same migration state.
Thus, through MST, we can know where a requested block is stored during
exchanging virtual disks, and then provide continuing access to virtual disks while
they are being exchanged.

For moving virtual disk, the target storage pool can afford the performance
requirement of the migrated virtual disk. Therefore we allocate the same amount of
I/O resource to migrated virtual disk from the target storage pool as what we allocate
from the source storage pool. Thus, during migration, the performance of application
I/O towards the migrated part of virtual disk will be guaranteed.

However, for exchanging virtual disks, neither of the two storage pools can afford
another virtual disk. Therefore we cannot allocate the double I/O resource that the
exchanged virtual disks required to those virtual disks in advance. The dynamic
allocation of I/O resource is a good choice. We suppose that the workload spreads
around the virtual disk evenly. Thus, when a virtual disk spreads around two storage
pools and is divided into two parts, the I/O resource required by any part of virtual
disk is in proportion with the number of blocks it owns. Then, the amount of I/O
resource that should be allocated to VDi from the target storage pool currently can be
calculated with formula (6).

ii
t

i
t
i SVVS ×= (6)

Here, Si is the total I/O resource that should be allocated to VDi from the target
storage pool after migration; is the amount of I/O resource currently allocated to
VDi from the target storage pool; Vi is the total number of blocks of VDi; is the
current number of migrated blocks of VDi.

3.3 Combining Application I/O and Migration I/O

When a write request towards the migrated virtual disk comes, if the migration state
of target chunk is 0, the block in the source storage pool will be updated. After a
while, this block will be migrated to the target storage pool. In this case, if the write
request is not sent to the source storage pool but redirected to the target storage pool,
the I/O operation of migration will be saved.

Therefore, when moving a virtual disk, if a write request comes and the migration
state of the target chunk is 0, the write request will be sent to the target storage pool,
and after the request is completed, the migration state of the target chunk is set as 1.
However, the method will not work when exchanging two virtual disks, for
exchanging a pair of data chunks involves two write operations. We need a more
complicated method to deal with this situation. The following section will explain the
methods used in moving a virtual disk and exchanged two virtual disks in details.

t
iS

t
iV

232 Y. Feng et al.

4 Storage Transaction

Moving a virtual disk and exchanging two virtual disks both translate into multiple
I/O operations towards the storage pools and update operation towards MST. Thus
concurrent application I/O operation may corrupt MST and cause application to lose
updated data or read inconsistent data.

In this section, we propose an approach, which allows the migration I/O operations
to be a transaction, called storage transaction, to coordinate the migration I/O
operation and the application I/O operation, such that the application I/O and the
migration I/O can execute concurrently.

4.1 Moving a Virtual Disk

Moving a virtual disk involves reading from the source storage pool, writing to the
target storage pool and updating MST. The storage transaction of moving a virtual
disk is divided into three phrases, reading, waiting and writing. Fig. 1 gives the state
transition of the storage transaction of moving a virtual disk.

Fig. 1. State transition of the storage transaction of moving a virtual disk

When formula (5) is true in the source storage pool, a reading request will be sent
to the source storage pool, and then a storage transaction in the reading state is
created. After the reading request is completed, the storage transaction is in waiting
state. When formula (5) is true in the target storage pool, if there is a storage
transaction in the waiting state, a writing request will be sent to target storage pool,
and then the storage transaction turns into the writing state. Before sending the
writing request, the migration state of the writing chunk should be set as 1. After the
writing request is completed, the storage transaction is completed. Furthermore, when
a writing request from application towards the migrated virtual disk comes, if the
migrated state of the written chunk is 0, the writing request will be send to the target
storage pool and the migrated state will be set as 1, which will create a storage
transaction in the writing state. Especially, if the written chunk belongs to a storage
transaction, which is in the reading state or waiting state, the original storage
transaction will be cancelled.

The approach of moving a virtual disk explained above only uses the spare I/O
resource to execute the migration task and protects the consistency of the data of the
moved virtual disk during migration with storage transaction. When the conflict
between the migration I/O and the application I/O occurs, the approach will combine

C2

C3 C4

C5 C5

begin

waiting

writing

reading

end

C1

C1: Formula (5) is true in the source storage pool ;
C2: reading request is completed;
C3: Formula (5) is true in the target storage pool;
C4: writing request is completed;
C5: writing request from application comes

 Online Virtual Disk Migration with Performance Guarantees 233

the application I/O and the migration I/O. Thus, the application I/O and the migration
I/O will execute concurrently.

4.2 Exchanging Virtual Disks

Different from moving a virtual disk, exchanging two virtual disks involves two pairs
of I/O operations, and either of the involved storage pools is not only source storage
pool but also target storage pool. The state of either of the storage pools is not enough
to identify the state of storage transaction during exchanging two virtual disks.
Therefore, we use a pair of states, the state of the source storage pool and the state of
the target storage pool instead. For convenience, we call the overloaded storage pool
as source storage pool and the underloaded storage pool as target storage pool. Fig. 2
shows the state transition of the storage transaction of exchanging two virtual disks.

Fig. 2. State transition of the storage transaction of exchanging two virtual disks

In Fig. 2, the state of storage transaction is represented by (s-state, t-state). Here, s-
state is the state of source storage pool; t-state is the state of target storage pool. There
are four kinds of state, including r-waiting, reading, w-waiting and writing. r-waiting
means a reading request needs to be dispatched; reading means a reading request has
been dispatched; w-waiting means a reading request has been finished and the

C1: Formula (5) is true in the source storage pool;
C2: reading request is completed;
C3: Formula (5) is true in the target storage pool;
C4: writing request is completed;
C5: writing request from application towards the source storage pool comes;
C6: writing request from application towards the target storage pool comes.

C6
cancel

not w-waiting, any any, not w-waiting

C5

C5C6

C6 C5

C1 or C3 or C5 or C6

C3

C2 C2

C3 C1C2

C2C2

C1C3

C1 begin

reading,r-waiting r-waiting,reading

reading,reading

r-waiting,w-waiting w-waiting,r-waiting

reading,w-waitingw-waiting,reading

w-waiting,w-waiting

end

writing,writing

C4

234 Y. Feng et al.

corresponding writing request needs to be dispatched to the other storage pool;
writing means a writing request has been dispatched. In addition, the word “any”
means any kind of states; the word “not w-waiting” means any kind of states except
w-waiting.

When formula (5) is true in the source storage pool, if there is a storage transaction
in the state of (w-waiting, w-waiting), a pair of writing requests will be sent to the
source storage pool and the target storage pool, and then the storage transaction turns
into the state of (writing, writing). Before sending the writing requests, the migration
state of the writing chunks should be set as 1. When the pair of writing requests is
completed, the corresponding storage transaction is completed. Otherwise, if there is a
storage transaction in the state of (w-reading, any), a reading request will be sent to
source storage pool, and the storage transaction turns into the state of (reading, any).
If there is no storage transaction in the state of (writing, writing) or (w-reading, any),
a reading request towards a trunk, which has not been exchanged, will be sent to the
source storage pool, which will create a new storage transaction in the state (reading,
w-reading). When a reading request is completed in the source storage pool, the
corresponding storage transaction will turn into the state of (w-writing, any) from
(reading, any). Furthermore, when a writing request towards the source storage pool
comes, if the target chunk belongs to a storage transaction, which is in the state of
(any, w-writing), the request will be redirected to the target storage pool and a writing
request will be sent to the source storage pool, and then the storage transaction turns
into the state of (writing, writing). Otherwise, the storage transaction, which the target
chunk belongs to, will be cancelled.

The process method in the target storage pool is same as the process method
explained above in the source storage pool.

In the approach of exchanging two virtual disks explained above, although when
writing the exchanged chunks to the storage pools, one of the storage pools may not
have spare I/O resource, most of I/O operations of exchanging two virtual disks
execute with spare I/O resource. Therefore, there is only a little impact of migration
on the performance of virtual disks. Moreover, when the conflict between the
migration I/O and the application I/O occurs, the approach either combines the
application I/O and the migration I/O, or cancels the storage transaction. Thus, the
application I/O and the migration I/O will execute concurrently.

4.3 Disaster Recovery

In order to preserve the consistency of the migrated virtual disks in the event of a
disaster, such as power failure, during migration, we need store some metadata in
disks permanently. After the disaster, a user space tool can recover the migration task
through scanning the metadata in disks. It is not necessary to explicitly store all the
information in disks. Instead, enough information can be maintained to allow
migration task to be reconstructed after disaster.

The MST keeps the rate of progress of migration and is important for address
resolving. Moreover all other information, such as storage transaction state, can be
reconstructed from it. Therefore the MST is the only metadata need to be stored in
disks. For moving a virtual disk, the MST in disks is updated only after the writing
request of migration is completed in the target storage pool. For exchanging two

 Online Virtual Disk Migration with Performance Guarantees 235

virtual disks, before the pair of writing requests of migration is sent to storage pools,
the migrated chunks must be stored in the migration log in disks. After the writing
requests are both completed, the MST can be updated and the migration log can be
deleted.

5 Prototype

The approach of online virtual disk migration presented in this paper is designed for
storage maintenance tasks, especially for load balance, in a shared storage
environment with performance guarantees. To evaluate the approach, we implement it
into E-DM, which is based on DM (Device Mapper) [13]. Like DM, E-DM groups
some physical volumes (PV) into a volume group (VG), and allocates logic volume
(LV) from VG. The PV, VG and LV are equivalents of physical disk, storage pool
and virtual disk referred in this paper respectively. However, different from DM,
which can only provide capacity virtualization, E-DM can provide both capacity and
performance virtualization. In addition, we also implement some facilities to enable
E-DM to support continuous availability [14].

In E-DM, the approach of online virtual disk migration is added into I/O
scheduling thread, a kernel thread that schedules requests from all virtual disks in the
storage system with EPYFQ scheduling algorithm to guarantee the performance
requirement of virtual disks. When executing migration task, firstly a migration plan,
including source storage pool, target storage pool and migrated virtual disks, is
submitted to E-DM through dmsetup, a user space configure tool of E-DM. After that,
E-DM establishes a MST for the migrated virtual disks, and expands the address-
resolving table of migrated virtual disks, in which a block is mapped into both source
storage pool and target storage pool. When a request comes, E-DM firstly decides
which storage pool the request is sent to according to the migration state in MST, and
then resolves the physical address according to the address-resolving table of the
selected storage pool. During migration, E-DM migrates virtual disks with the
approach presented in this paper. When the migration task is completed, E-DM will
delete the MST and the address-resolving table of migrated virtual disks in the target
storage pool. If a disaster occurs during migration, the administrator can use dmscan,
another user space configure tool of E-DM, to scan the permanent metadata of E-DM
in disks to reconstruct the metadata of E-DM and recover the migration tasks. In
addition, the migration of virtual disks is transparent to the upper applications of E-
DM, such as database, file system and raw device. There is not any restriction for
these applications during migration.

6 Experimental Evaluation

The experiments are run on a dual Pentium 700 MHz computer with 256 MB of
RAM. The versions of Linux kernel and E-DM module are 2.4.20 and 1.00.05
respectively. A NEC S2100 disk array is connected directly to an Emulex Lightplus
750 HBA card in the PC. NEC S2100 is a midrange disk array with 15 HITACHI
DK32DJ-36FC disks (10025RPM, 36.9GB each). We set up two RAID0 Logic Units
(LU) using four disks, each with two disks, on the disk array, and configure them as

236 Y. Feng et al.

two VGs, VG1 and VG2, in E-DM. After that, we allocate two logic disks, VD1 and
VD2, from VG1 and allocate one logic disk VD3 from VG2. These VDs are
configured as following: They both have a capacity of 1GB; VD1 has an 80% share of
the I/O resource of the VG1; VD2 has a 20% share of the I/O resource of the VG1;
VD3 has a 40% share of the I/O resource of the VG2. The synthetic workloads used
in the experiments are generated by Iometer. The workloads of VD1, VD2 and VD3
all issue purely random 64 KB read/write mix (67% read, 33% write). The maximum
number of outstanding I/O of the workloads is set as 5. We use the delay time to
regulate the intensity of the workload. In Iometer, the delay time specifies the time
between two adjacent requests. Furthermore, to avoid the influence of Linux buffer
cache, “raw” devices associated with the VDs are used.

Table 1. The test results during moving VD2

No. disk
delay time

(ms)
IOPS ART (ms) move time (s)

difference
of IOPS

VD1 5 104.01 33.40
1

VD2 5 26.34 85.82
N/A N/A

VD1 40 20.36 17.93
VD2 20 34.02 19.10

N/A N/A

VD1 40 20.02 19.67 -1.7%
2

VD2 20 29.22 40.46
409

+10.9%
VD1 30 25.32 18.51
VD2 20 33.87 20.56

N/A N/A

VD1 30 24.67 20.44 -2.6%
3

VD2 20 28.43 44.32
488

+7.9%
VD1 20 36.02 19.60
VD2 20 32.52 22.02

N/A N/A

VD1 20 35.23 21.74 -2.2%
4

VD2 20 28.88 51.68
841

+9.6%
VD1 15 51.56 21.15
VD2 20 30.34 29.39

N/A N/A

VD1 15 50.03 24.72 -3.0%
5

VD2 20 28.74 59.27
1169

+8.7%

VD2 is the migrated virtual disk, and after migration, VD2 will have a 40% share
of the I/O resource of the VG2. Table 1 gives five groups of test results. The first is
IOPS and ART (Average Response Time) of VD1 and VD2 when VD1 and VD2 are
both overloaded, which indicates the performance requirements of VD1 and VD2.
The following four groups are IOPS and ART of VD1 and VD2 with different delay
times. In each group, the first two lines are tested before migration, and the last two
lines are tested during moving VD2 from VG1 to VG2. In the last column of table 1,
“Difference of IOPS”, we give the difference ratio of IOPS. For VD1, the value is
difference ration of IOPS in the same line to the difference between IOPS in the same
line and IOPS in the first line of the same group, which indicates the impact of
migration on the performance of underloaded virtual disks. For VD2, the value is
difference ration of IOPS in the same line to the difference between IOPS in the same
line and IOPS in the second line of the first group, which indicate the impact of
migration on the performance of overloaded virtual disks.

 Online Virtual Disk Migration with Performance Guarantees 237

From the second group of test results to the fifth group of test results, the delay time
of workload of VD2 is set as 20ms, which exceeds the performance that VD2 is
requested to provide, that is to say, VD2 is overloaded. At the same time, the delay time
of workload of VD1 is changed from 40ms in the second group to 15 ms in the fifth
group, however is still under the performance that VD1 is requested to provide, that is to
say, VD1 is underloaded. From the last column “difference of IOPS”, we can see that
the decrease of IOPS of VD1 is not more than 3%, which means that there is only a little
impact of migration on the performance of underloaded virtual disk. Meanwhile, the
IOPS of VD2 during migration is still more than the IOPS that VD2 is requested to
provide (26.34, list in the second line). However the difference is less than 11%, which
indicates that most of the spare I/O resource left by VD1 is used by migration I/O
operations, and only a little is used by application I/O operations towards VD2.

As described above, we can draw a conclusion that the approach presented in this
paper only uses the spare I/O resource to execute migration I/O operation. Therefore
the performance of virtual disks is guaranteed during migration. Moreover it gives
high priority of using spare I/O resource to migration tasks, which make migration is
completed as soon as possible. Undoubtedly, the approach is a kind of online virtual
disks migration and can provide continuous access to virtual disks during migration.

7 Conclusion

In order to guarantee the performance of virtual disks during executing storage
maintenance tasks, especially load balance, in a shared storage environment. We
present an approach of on-line virtual disks migration and implement it into E-DM.
We also evaluate it using synthesized I/O load generated by Iometer.

Our approach guarantees the I/O resource of virtual disks during migration from
the following three aspects. Firstly, based on EPYFQ scheduling algorithm, it only
uses the spare I/O resource to execute migration I/O operations. Secondly, it allocates
enough I/O resource to the migrated virtual disks from the source storage pool and the
target storage pool during migration. Thirdly, it enables some I/O operations of
foreground applications to replace the migration I/O operations, thus reduces the I/O
resource used by migration. Moreover, it uses storage transactions to protect the
consistency of the data in the migrated virtual disks during migration, so that it can
provide continuous access to migrated virtual disks. In addition, our approach can be
applied to moving a virtual disk and exchanging virtual disks, which is not provided
by former approaches. The test results also show that our approach can provide
performance guarantees and continuous access to virtual disks during migration.

References

1. Wilkes, J., Rickard, W., Gibson, G. et al.: Shared Storage Model A Framework for
Describing Storage Architectures. SNIA Technical Council Proposal Document (2003)

2. Wilkes, J.: Traveling to Rome: QoS Specifications for Automated Storage System
Management. In Wolf, L. C., Hutchison, D., Steinmetz, R. (eds.): Quality of Service.
Lecture Notes in Computer Science, Vol.2092. Springer-Verlag, Berlin Heidelberg New
York (2001) 75-91

238 Y. Feng et al.

3. Anderson, E., Hobbs, M., Keeton, K. et al.: Hippodrome: Running Circles Around Storage
Administration. In Proc. of the 1st Conference on File system and Storage Technology.
USENIX, Berkeley CA. (2002) 175-188

4. Huang, L.:Stonehenge: A High Performance Virtualized Storage Cluster with QoS
Guarantee. Technical Report TR-138. ECSL, Computer Science Department, SUNY Stony
Brook (2003)

5. Feng, Y., Zhang, Y. Y., Jia, R. Y.: EPYFQ: A Novel Scheduling Algorithm for
Performance Virtualization in Shared Storage Environment, In Proc. of the 5th
International Workshop on Software and Performance. ACM, New York (2005)

6. Iometer project. Available from http://www.iometer.org/
7. LVM project. Available from http://www.sistina.com/
8. Veritas Software Corp.: Veritas Volume Manager. Available from http://www.veritas.com/
9. Lu, C., Alvarez, G. A., Wilkes, J.: Aqueduct: Online Data Migration with Performance

Guarantees. In Proc. of the 1st Conference on File and Storage Technologies. USENIX,
Berkeley CA. (2002) 219-230.

10. NEC Corp Ltd.: DataSheet of Diskarray S4300. Available from http://www.sw.nec.
co.jp/necstorage/global/product/san/s4300/index.shtml

11. Thereska, E., Schindler, J., Bucy, J. et al.: A Framework for Building Unobtrusive Disk
Maintenance Applications. In Proc. of the 3rd Conference on File and Storage
Technologies. USENIX, Berkeley CA. (2004) 213-226

12. Scheuermann, P., Weikum, G., Zabback, P.: Data Partitioning and Load Balancing in
Parallel Disk Systems. Int. J. VLDB 1 (1998) 48-66

13. Device-mapper project. Available from http://sources.redhat.com/dm/
14. Feng, Y., Zhang, Y. Y., Jia, R. Y.: Research and Implementation of a Snapshot Facility

Suitable for Soft-Failure Recovery. In: Jin, H., Gao, G. R., Xu, Z. W., Chen, H. (eds.):
Network and Parallel Computing. Lecture Notes in Computer Science, Vol.3222. Springer-
Verlag, Berlin Heidelberg New York (2004) 256-260

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 239 – 248, 2005.
© Springer-Verlag Berlin Heidelberg 2005

ParC#: Parallel Computing with C# in .Net

João Fernando Ferreira and João Luís Sobral

Departamento de Informática - Universidade do Minho,
4710 - 057 BRAGA – Portugal

{joaoferreira, jls}@di.uminho.pt

Abstract. This paper describes experiments with the development of a parallel
computing platform on top of a compatible C# implementation: the Mono
project. This implementation has the advantage of running on both Windows
and UNIX platforms and has reached a stable state. This paper presents
performance results obtained and compares these results with implementations
in Java/RMI. The results show that the Mono network performance, critical for
parallel applications, has greatly improved in recent releases, that it is superior
to the Java RMI and is close to the performance of the new Java nio package.
The Mono virtual machine is not yet so highly tuned as the Sun JVM and
Thread scheduling needs to be improved. Overall, this platform is a new
alternative to explore in the future for parallel computing.

1 Introduction

Traditional parallel computing is based on languages such as C/C++ and Fortran,
since these languages provide a very good performance. Message passing libraries
such as MPI and PVM are also very popular, since there are bindings for several
languages and implementations for high performance networks, like Myrinet and
Infiniband. These message passing libraries support the CSP model, where parallel
applications are decomposed into a set of processes that communicate through
message passing. It has been recognised that this programming model is not the most
appropriated for object-oriented applications [1], since the natural mechanism for
communication on these applications is the method invocation. Several extensions to
C++ have been proposed [2] that use the object as the base unit of parallelism (instead
of process) and objects communicate through remote method invocations (instead of
message passing).

The Java programming language has gained an increasing acceptation in the last
decade. It is a much cleaner object oriented language than C++, since it removes the
burden of pointer management and memory allocation. It also has an increased
portability, since it is based on a virtual machine and an application can run anywhere
that has a virtual machine implementation. This approach also resolves the
communication problem among heterogeneous machines, since the communication is
always between virtual machines. These are also important advantages for the
increasing popular GRID computing field. The Java language also includes support
for threads, remote method invocation (RMI) and object serialisation. Object
serialisation allows object copies to move between virtual machines, even when
objects are not allocated on a continuous memory range or when they are composed

240 J.F. Ferreira and J.L. Sobral

by several objects. The serialisation mechanism can automatically copy the object to a
continuous stream that can be sent to another virtual machine, which can reconstruct a
copy of the original object structure on the remote machine.

Several works are based on the Java platform for parallel computing: performance
improvements to the original RMI implementation [3], thread distribution among
virtual machines [4][5], MPI bindings [6] and implementation of higher level
programming paradigms [7], just to name a few.

Microsoft has proposed the .Net platform to compete against the Java success. In
particular, the C# language closely resembles to Java: it is also based on a virtual
machine; it relieves the programmer from memory allocation and pointer
management issues; it includes thread support in the language specification and
supports RMI. However, the C# language includes some improvements; namely, it
provides support for asynchronous method invocation and several ways to publish
remote objects, which will be discussed in more detail in the next section. The main
Microsoft .Net platform drawback is the lack of support in other platforms besides
Microsoft Windows. This may explain the limited number of research projects related
to .Net platform on clusters, since clusters mainly run Linux operating systems or
other UNIX variants.

The Mono project is a free .Net platform implementation that runs on several
operating systems, including Linux machines. This paper describes the experience
acquired when porting a parallel object oriented system to this platform. The rest of
this paper is organised as follows. Section 2 presents a more detailed comparison of
the supported concurrency and distribution mechanisms of MPI, Java and C#. Section
3 presents the proposed platform, including the programming model and its
implementation on the Mono platform. Section 4 presents performance results.
Section 5 closes the paper with suggestions for future work.

2 C# Remoting Versus MPI and JAVA RMI

The Message Passing Interface (MPI) is a collection of routines for inter process
communication. The mechanisms for communication are based on explicit message
send and receive, where each process is identified by its rank in the communication
group. MPI has a large set of primitives to send and receive messages, namely,
blocking and unblocking sends and receives; broadcasts and reductions. MPI requires
explicit packing and unpacking of messages (i.e., a data structure residing in a
non-continuous memory must be packed into a continuous memory area before being
sent and must be unpacked in the receiver). A thread library such as Pthreads can be
used to create multithreaded applications. However, most MPI implementations are
not thread safe, increasing the application complexity, when several threads in the
same process need to access to the MPI library.

The Java language specification includes support for multithreaded applications
through the Thread class and the Runnable interface. The thread method start initiates
the execution of a new thread that executes the run method of an object implementing
the Runnable interface. Synchronised methods prevent two threads from
simultaneously executing code in the same object, avoiding data races. The Java RMI
provides remote method invocations among Java virtual machines. Using RMI
involves several steps, which considerably increase the burden to use it:

 ParC#: Parallel Computing with C# in .Net 241

public interface IDServer extends Remote {
 double divide(double d1, double d2) throws RemoteException;
}

public class DServer extends UnicastRemoteObject implements IDServer {
 public double divide(double d1, double d2) throws RemoteException {
 return d1 / d2;
 }
 public static void main(String args[]) {
 try {
 DServer dsi = new DServer();
 Naming.rebind("rmi://host:1050/DivideServer",dsi);
 } catch(Exception e) { e.printStackTrace(); }
 }
}

public class DivideClient {
 public static void main(String args[]) {
 try {
 IDServer ds; // Obtains a reference to the remote object
 ds = (IDServer) Naming.lookup("rmi://host:1050/DivideServer");
 double d1 = Double.valueOf(args[0]).doubleValue();
 double d2 = Double.valueOf(args[1]).doubleValue();
 double result = ds.divide(d1, d2);
 } catch(RemoteException ex) { ex.printStackTrace(); }
}

public class DServer {
 public double divide(double d1, double d2) {
 return d1 / d2;
 }

public class DivideClient {
 public static void main(String args[]) {
 DServer ds = new DServer();
 double d1 = Double.valueOf(args[0]).doubleValue();
 double d2 = Double.valueOf(args[1]).doubleValue();
 double result = ds.divide(d1, d2);
 }
}

1. Server classes must implement an interface, which must extend the Remote
interface, and its methods must throw a RemoteException.

2. Each server object must be manually instantiated (by introducing a main method
on the server class), exported to be remotely available and registered in a name
server to provide remote references to it;

3. Client classes must contact a name server to obtain a local reference to a remote
object;

4. Each remote call must include a try { … } catch statement to deal with
RemoteExcetions;

5. For each server class it is required to run the rmic utility to generate proxies and
ties that are, respectively, used by the client and server class in a transparent way.

Fig. 1 illustrates these required transforms for a simple remote class that performs a
division of two numbers.

Fig. 1. Conversion of a Java class to a remote class

With RMI the only binding between the client and the server is the registered name
of the server object (host:1050/DivideServer in the figure), which truly provides
location transparency. All objects passed among remote classes should implement the

242 J.F. Ferreira and J.L. Sobral

public interface IDServer {
 double divide(double d1, double d2);
}

public class DServer : MarshalByRefObject, IDServer {
 public double divide(double d1, double d2) {
 return d1 / d2;
 }
 public static int Main (string [] args) {
 TcpChannel cn = new TcpChannel (1050);
 ChannelServices.RegisterChannel(cn);
 RemotingConfiguration.RegisterWellKnownServiceType(typeof(DServer),
 "DivideServer", WellKnownObjectMode.Singleton);
 }
}

public class DivideClient {
 public static int Main (string [] args) {
 TcpChannel cn = new TcpChannel();
 ChannelServices.RegisterChannel(cn);
 IDServer ds = (IDServer) Activator.GetObject(typeof(DivideServer),
 "tcp://localhost:1050/DivideServer");
 double d1 = Convert.ToDouble(args[0]);
 double d2 = Convert.ToDouble(args[1]);
 double result = ds.divide(d1, d2);
 }
}

interface serializable, providing a way to automatically send object copies among
virtual machines.

The .Net platform implements threads in a way similar to Java, but the use of
remote method invocations has become simpler and several improvements have been
added. One important difference is the various alternatives to publish remote objects
(step 2 from the previous list). In addition to publish objects explicitly instantiated, it
is possible to register an object factory that instantiates objects at request. This object
factory has two alternatives to instantiate objects:

1. singleton - all remote calls are executed by the same object instance;
2. singlecall – each remote call may be executed by a different instance (i.e., object

state is not maintained between remote calls).

Fig. 2 presents the code in Fig. 1 converted to C#.

Fig. 2. Remote class in C#

There are two important differences: no RemoteException needs to be
thrown/caught and the server code only publishes the object factory
(RemotingConfiguration line), not an object instance. Conversely to the Java version
it is not required to generate proxy and ties, since they are automatically generated.

C# Remoting also includes support for asynchronous method invocation through
delegates. A delegate can perform a method call in background and provides a
mechanism to get the remote method return value, if required. In Java, a similar
functionality must be explicitly programmed using threads.

3 The Platform

The ParC# is a SCOOPP (Scalable Object Oriented Parallel Programming)
implementation [8], which has been previously implemented in C++/MPI

 ParC#: Parallel Computing with C# in .Net 243

(implementation called ParC++). The C# implementation is much simpler, since the
C++ version must contain code to explicitly pack/unpack method tags and parameters
into MPI messages, required to implement synchronous or asynchronous remote
method invocations. This section shortly reviews the programming model and details
the main differences between these two implementations.

3.1 Programming Paradigm

SCOOPP is based on an object oriented programming paradigm supporting active and
passive objects. Active objects are called parallel objects and they specify explicit
parallelism, having its own thread of control. These objects model parallel tasks and
are automatically distributed among processing nodes. They communicate through
either asynchronous (when no value is returned) or synchronous method calls (when a
value is returned).

References to parallel objects may be copied or sent as a method argument, which
may lead to cycles in a dependence graph. The application's dependence graph
becomes a DAG when this feature is not used.

Passive objects are supported to make easier the reuse of existing code. These
objects are placed in the context of the parallel object that created them, and only
copies of them are allowed to move between parallel objects.

SCOOPP removes parallelism overheads at run-time by transforming (packing)
parallel objects in passive ones and by aggregating method calls [9]. These run-time
optimisations are implemented through:
− method call aggregation: (delay and) combine a series of asynchronous method

calls into a single aggregate call message; this reduces message overheads and per-
message latency;

− object agglomeration: when a new object is created, create it locally so that its
subsequent (asynchronous parallel) method invocations are actually executed
synchronously and serially.

3.2 Implementation

The ParC++ implementation supports some extensions to C++. It includes a
pre-processor, several C++ support classes and a run-time system. The pre-processor
analyses the application - retrieving information about the declared parallel objects -
and generates code for remote object creation and remote method invocation.

The ParC++ run-time system (RTS) is based on three object classes: proxy objects
(PO), implementation objects (IO) and server objects (SO).

A PO represents a local or a remote parallel object and has the same interface as
the object it represents. It transparently replaces remote parallel objects and forwards
all method invocations to the remote parallel object implementation (IO/SO in Fig. 3).
A PO maintains the remote identification of its IO and SO. On inter-grains method
calls the PO forwards the call to a remote SO, which activates the corresponding
method on the IO (calls a in Fig.3). On intra-grain calls, the PO directly calls the
corresponding method on the local IO (call b in Fig.3).

Converting the ParC++ prototype to C# removed a large amount of code from PO
objects, since most of its functionality is already implemented by C# remoting.

244 J.F. Ferreira and J.L. Sobral

public class PrimeServer : PrimeFilter {
 public void process(int[] num) {
 ...
 }
}

public class PrimeServer : PrimeFilter { // PO object
 public delegate void RemoteAsyncDelegate (int[] num); // delegate decl.
 PrimeServerImpl obj; // reference to IO object
 ...
 public void process(int[] num) { // asynchronous call using delegates
 RemoteAsyncDelegate RemoteDel= new RemoteAsyncDelegate(obj.process);
 IAsyncResult RemAr=RemoteDel.BeginInvoke(num,null,null);
 }
}

 Node 0 Node 1

IO 3

SO

b)

a)

a)

Call through IPC/RMI

Method call

IO 1

IO 2

c)

d)

PO 1

Object creation

OM OM

c)

PO 2

c)

Fig. 3. Inter-grains a) and intra-grain b) method calls; RTS c) and d) direct object creation

However, PO objects are still required, since they perform much of the grain-size
adaptation. The main simplification of PO objects arises from the elimination of code
required to pack a method tag and method arguments into a MPI message. This code
is directly replaced by a direct call to the corresponding method in the IO, using C#
remoting. This change also allowed PO objects to transparently use remote objects or
local objects (i.e., those objects created directly, when performing object
agglomeration). Implementing asynchronous method invocation was simpler, since it
only required the use of delegates. During the preprocessing phase, the original
parallel object classes are replaced by generated PO classes.

Fig. 4 presents a simple source code and the PO code generated by the
preprocessor. This code calls the process method asynchronously, using a delegate.

Fig. 4. PO object using delegates

The ParC++ RTS provides run-time grain-size adaptation and load balancing
through cooperation among object managers (OM) and POs. The application entry
code creates one instance of the OM on each processing node. The OM controls the
grain-size adaptation by instructing PO objects to perform method call aggregation
and/or object agglomeration.

When a parallel object is created in the original code, the generated code creates a
PO object instead. The first task of the newly created PO is to request the creation of

 ParC#: Parallel Computing with C# in .Net 245

public class PrimeServer : PrimeFilter { // PO object
 ...
 PrimeServerImpl obj; // reference to IO object
 ...
 public PrimeServer() {
 if (aglomerateObj) { // perform agglomeration?
 obj = new PrimeServerImpl(); // intra-grain object creation
 ... // notify local OM
 }
 else {
 ... // contact OM to get a (host) and tcp (port) for the new object
 string uri="tcp://"+host+":"+port+"/factory.soap";
 // gets a reference to the remote factory (rf)
 rf =(RemoteFactory)Activator.GetObject(typeof(RemoteFactory),uri);
 obj=(PrimeServerImpl)rf.PrimeServer(); // request remote object creation
 }
 }
}

public class PrimeServerImpl : MarshalByRefObject {
 ...
 public void process(int[] num) {
 ... // copy of the original method implementation
 }
}
// object factory
public class RemoteFactory : MarshalByRefObject {
 ...
 public PrimeServerImpl PrimeServer() {
 return new PrimeServerImpl();
 }
}
// main code the register the factory
public static void Main (string [] args) {
 ...
 RemotingConfiguration.RegisterWellKnownServiceType(typeof(RemoteFactory),
 "factory.soap",WellKnownObjectMode.Singleton);
}

the IO. When parallelism is not being removed, the OM selects a processing node to
create a new IO (according to the current load distribution policy), selects or creates
the associated SO and returns their identifier to the PO (calls c in Fig.3). When the
RTS is removing excess of parallelism, the PO directly creates the parallel object, by
locally creating the IO (call d in Fig.3) and notifying the RTS. In ParC# this generated
code is very similar to the ParC++ code and it is placed on the PO object constructor.
shows the PO generated constructor from the example in Fig. 4.

Fig. 5. PO generated code for IO object creation

Fig. 6. IO code and the corresponding factory

In ParC++ SO objects are active entities (i.e., threads) that continuously receive
messages from PO objects, calling the requested method on local IO and, if needed,
returning the result value to the caller. The ParC# implementation no longer requires
SO objects and the corresponding message loop to receive external messages, since
this loop is implemented by the C# remoting.

The object manager in the ParC++ implementation had the responsibility to
perform load management and explicit object creation. A factory was generated for
each class and instantiated on each node to implement this functionality. On the C#

246 J.F. Ferreira and J.L. Sobral

public class PrimeServer : PrimeFilter { // PO with method call aggregation
 [Serializable]
 struct paramsprocess {
 public int[] num;
 } // array structure for multiple invocations
 public ArrayList processList = new ArrayList();
 paramsprocess processStruct = new paramsprocess();

 public void process (int[] num) {
 if (currentCall++<maxCalls) { // maxCalls = calls per message
 processStruct.num=num;
 processList.Add(processStruct);
 currentCall++;
 } else {
 obj.processN(processList, maxCalls);
 }
}
public class PrimeServerImpl : MarshalByRefObject { // IO code
 ...
 public void processN (ArrayList a, int nInv) {
 paramsprocess b;
 for (int i=0;i<maxCalls;i++) {
 b=(paramsprocess)(a[i]);
 process(b.num);
 }
}

prototype this functionality was separated form the OM code since object factories
can be automatically registered in the boot code of each node. Fig. 6 shows the code
of the generated IO from the previous example and also shows the generated object
factory and the code to register this factory.

Aggregating several method calls in a single message required the introduction of a
new method in the implementation object to process a pack of several method calls.
The parameters of the several invocations are placed in an array structure that is
constructed on the PO side and fetched from the array on the IO side. Fig. 7. presents
the generated code for method call aggregation.

Fig. 7. Method call aggregation code

4 Performance Results

Performance evaluation was performed through low and high level tests. The low
level evaluation measures the base communication latency and bandwidth. The high
level evaluation measures the application performance with a simple application.
These tests were run in a Linux cluster, connected through a 100 Mbit Ethernet. Each
node is a dual Athlon MP 1800+ and has 512 MB of RAM.

Low-level performance was evaluated by a ping-pong test, where messages with
several sizes are exchanged between two nodes. These tests compare the Mono
Remoting (version 1.1.7) performance against an equivalent Java RMI (SDK 1.4.2)
application and an MPI version (MPICH 1.2.6 and GNU g++ 3.2.2). Both Java and
the Mono implementations use a remote object, where an array of integers is sent and
received as the method parameter and return type. In these results the performance
penalty introduced by the ParC# platform is not noticeable (results not shown). The
MPI version uses the MPI_Send and MPI_Recv primitives.

Inter-node bandwidth (Fig. 8b) shows that the MPI bandwidth performance is
superior to Java and Mono. This is explained by the high level nature of the remote

 ParC#: Parallel Computing with C# in .Net 247

method invocation and the well-optimised version of MPI. Also, for large messages,
the Mono performance lags behind the Java implementation. This may be explained
by the fact that the Mono platform is relatively new, when compared to the other
alternatives and it is not yet so well tuned.

Inter node latency in Mono (not shown) is between the Java RMI and the MPI
latency (respectively, 520, 273 and 100us). This low latency is promising for parallel
applications since it is in the same order as highly optimised Java RMI

Fig. 8. Inter-node bandwidth a) Mono versus other; b) Mono implementations

Fig. 9. Parallel Ray Tracer execution time

implementations [3]. This latency is very close to the performance of the Java nio
package (introduced in Java 4). However, this Java package is more low level, based
on message passing. Fig. 8b compares the performance of various Mono
implementations; it shows that Mono performance has radically increased from
release 1.0.5 and the low performance of an Http channel.

The high level evaluation was performed using a parallel Ray Tracer from the Java
Grande Forum, converted to C#. This application was parallelised using a farming
approach, where each worker renders several lines from the generated image.

0,0

0,1

1,0

10,0

100,0

0,001 0,01 0,1 1 10 100 1000

Message Size (kbytes)

B
an

dw
ith

 (M
B

/s
)

Mono 1.1.7 (Tcp)
Mono 1.0.5 (Tcp)
Mono 1.1.7 (Http)

0,0

0,1

1,0

10,0

100,0

0,001 0,01 0,1 1 10 100 1000

Message Size (kbytes)

B
an

dw
ith

 (M
B

/s
)

MPI
Java RMI
Mono

0

20

40

60

80

100

120

140

1 2 3 4 5 6
Processors

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

ParC#
Java RMI

248 J.F. Ferreira and J.L. Sobral

Fig. 9 compares the execution times of Java and ParC# to render a scene with
500x500 pixels. The C# sequential execution time in this particular application is 40%
superior to the Java version (using the Microsoft virtual machine, on a Windows
machine, it is only 10% superior). This indicates that the Mono virtual machine is not
as highly tuned as the JVM. However, running another application, a prime number
sieve, the Mono execution time is about the same as the JVM.

The parallel Ray Tracer execution time in several processors is higher in ParC#
mainly due to the higher sequential time and due to thread management. The Mono
implementation uses a thread pool to reduce the thread creation cost; however
limiting the number of running threads in parallel applications reduces the overlap
among computation and communication and also produces starvation in some
application threads.

5 Conclusion

This paper presented the implementation of a parallel programming paradigm on top
of a C# and .Net platform. The experience with this implementation revealed that the
platform greatly simplifies the implementation of the ParC++ and that it is possible to
use C# and the .Net platform for parallel applications, both on Windows and UNIX
machines. Code can be moved between these two platforms without any
recompilation and it is even possible to use it simultaneously on both platforms
(something that Java does since its appearance). However, performance gains would
be achieved by a more performance tuned Mono implementation; specifically, the
virtual machine JIT and the Thread scheduling policy should be improved.

References

[1] Yonezawa, A., Tokoro, M. (eds): Object-Oriented Concurrent Programming, MIT Press
(1987)

[2] Wilson G. (ed): Parallel Programming Using C++, MIT Press (1996).
[3] Nester, C. ,Philippsen M., Haumacher, B. : A More Efficient RMI for Java, Proceedings of

the ACM 1999 Java Grande Conference, San Francisco, June (1999)
[4] MacBeth, M., McGuigan, K., Hatcher: Executing Java threads in parallel in a distributed-

memory environment, Proceedings of the 1998 conference of the Centre for Advanced
Studies on Collaborative research, Cascon’98, Ontario, Canada, November (1998)

[5] Aridor, Y., Factor, M., Teperman, A.: cJVM: A Single System Image of a JVM on a
Cluster, Int. Conference on Parallel Processing, Wakamatsu, Japan, September (1999)

[6] Baker, M., Carpenter, B., Fox, G., Ko, S., Lim, S.: MPIJAVA:An Object-Oriented JAVA
Interface to MPI, International Workshop on Java for Parallel and Distributed Computing,
Proceedings of the 11 IPPS/SPDP'99 Workshops, San Juan, Puerto Rico , April (1999)

[7] Philippsen, M., Zenger, M.: JavaParty – transparent remote objects in Java. Concurrency:
Practice and Experience. v. n. 11, November (1997)

[8] Sobral, J., Proença, A.: Designing Scalable Object Oriented Parallel Applications,
Proceedings of the 8th Int. European Conference on Parallel Processing (Euro-Par'02),
Parderborn, Germany, August (2002)

[9] Sobral, J., Proença. A.: A Run-time System for Dynamic Grain Packing, Proceedings of
the 5th Int. EuroPar Conference (Euro-Par'99), Toulouse, France, September (1999)

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 249 – 262, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Minimizing Hotspot Delay by Fully Utilizing the Link
Bandwidth on 2D Mesh with Virtual Cut-Through

Switching

MinHwan Ok and Myong-soon Park

Department of Computer Science and Engineering, Korea University,
Anam-dong, Seongbuk-gu, Seoul 136-701, South Korea

Phone: +82-31-460-5287, Fax: +82-31-460-5279
panflute@korea.ac.kr, myongsp@ilab.korea.ac.kr

Abstract. The hotspot seriously degrades the performance of a parallel algo-
rithm but there have not been many methods proposed for this problem. With-
out modification of mesh topology a reasonable method is fully utilizing all the
links of the hotspot node. A new routing method that incorporates both minimal
routes and non-minimal routes was proposed and approved with the hotspot
traffic patterns. In particular the routing method decide on misrouting without
the congestion detection. The routing method requires only little addition of
hardware and it is relatively simple.

1 Introduction

Collective communications such as global synchronization operation essentially incur
non-uniform traffic situation. Where the non-uniform traffic situation arise, the center
of the situation, might become a ‘hotspot.’ The other cause of hotspot is not-even
data-access. In this case, many other nodes transmit packets to a hotspot node to get
information from the node. Contention caused by accesses to the hotspot is notorious
for degrading performance of a parallel algorithm[1]. The phenomenon by hotspot is
not only the problem in multistage networks. Although mesh networks have multiple
physical links, the number of nodes that participate in collective communication or
the group size sharing information of a node grows multiple times when compared to
those of multistage networks. The objective of this work is to seek the method that re-
duces the delay by the hotspot on the mesh topology.

Enlarging the physical consumption channel could be a straight solution to the hot-
spot. Basak and Panda have used multiple consumption channels than single one for
each processor on wormhole-routed k-ary n-cube[10]. Their approach is to analyze
various factors of interconnection network with message consumption, and derive the
minimum number of required consumption channels for alleviating consumption bot-
tleneck. In the approach, additional channel per processor is necessary thus additional
hardware cost is imposed. Sun and Cheung have developed a tree-based routing
scheme for supporting barrier synchronization[2]. However since each router should
have knowledge of barrier group to maintain a collective synchronization tree, special

250 M. Ok and M.-s. Park

hardware is added into the routers. The cost/performance trade-off of the synchroniza-
tion hardware is analyzed[3], and it is the cost for only the synchronization, not for all
the cases of hotspots. Without enlarging the channel bandwidth or the knowledge of
collective communication which is at application-level, one solution would be using
all available network resources efficiently to alleviate the hotspot effect. Routing al-
gorithms govern the use of network resources, and the underlying switching method
concerns the routing.

To provide good network performance, a key point is to develop a traffic-balanced
network with minimum diameter and average path length[6]. Traffic-balancing means
even usage of network resources and efficient usage is achieved by minimum average
path length. Virtual channels employed in wormhole switching prevent the deadlock.
However a few algorithms results in uneven load distribution in using the virtual
channels[7]. Even usage of network resources is gained by load balancing between
virtual channels in mesh. Chuang et al. have proposed buffer utilization scheme for
mesh with virtual channels[8]. They defined a particular area of high traffic load,
where hotspot might emerge, and restricted passage to or through the area by re-
mained area. However the schemes don’t aim at hotspot problem directly, but to dis-
tribute the traffic load evenly over the network. Once hotspot situation arose it is de-
sirable to complete the communication that caused the hotspot as soon as possible,
either it is collective communication or not, since the situation affects much of the
overall system performance[2].

Among network resources two major resources are the link bandwidth and buffer
capacity. Adaptive routing is a primary way to gain more link bandwidth from given
interconnection topology. Misrouting is necessary if there is an idle link available
around the hotspot but it is important not to extend the path much since the longer
path charges the more network resources. By this reason there were not much works
with misrouting so far. Most of them were for fault-tolerance and a little were for re-
ducing packet latency. Moreover it is rare what dealt with the hotspot case. In [14]
misrouting or Non-minimal algorithm was slightly worse than the best algorithm
since it charged more network resources, although the hotspot was not dealt with.

Virtual cut-through switching has some merit such that wire length is independent
of buffer size and preventing deadlock is more flexible when adaptive routes are con-
sidered[4][5]. Adaptive routing methods that select only minimal paths including one
presented by Pifarre et al.[9] don’t utilize all available paths to the destination. The
main problem with minimal adaptive routers is that, in general, the number of paths
available decreases as the distance to the destination decreases. Because of this, pack-
ets near their destinations lose their ability to maneuver around the congestion, and a
worse, hotspot[13].

Non-minimal adaptive routings that selects misroutes have been proposed[11][12],
and the effect of various misroute limits is presented in [12]. The motivation in mis-
routing is it would be better go misroute than being blocked in each router buffer and
that was proved for high network load in many works. For 2D mesh fully utilizing the
4 links of a hotspot node by misrouting could alleviate the hotspot problem. In this
paper we propose a new routing algorithm with virtual cut-through switching to
reduce hotspot delay, which is blocking time in each router or switch buffer. A new
method to distribute packets evenly on 2D mesh is introduced in Section 2, and a mis-
routing based on the method is described in the Section 3. Section 4 presents perform-

 Minimizing Hotspot Delay by Fully Utilizing the Link Bandwidth on 2D Mesh 251

ance evaluation for the proposed routing method including one recent famous routing,
and Section 5 finalizes the contribution.

2 Link Selection to Distribute Packets Evenly

This section introduces a new method to utilize links evenly on 2D mesh. Utilizing
links evenly would induce even usage of buffers in the network. On 2D mesh a node
has 4 pairs of input and output links, each pair for each direction, east, west, north and
south, respectively, except for boundary nodes. Each node has the buffer to capture
income packets from each direction. To avoid blocking in the buffer of each interme-
diate switch, we utilize all available links of each switch by devising a new link selec-
tion method as follows. The objective of the method is that a switch receives the in-
coming packets along two links then sends the outgoing packets along the other two
links with the same numbers of packets. The packet length is fixed and all the same in
virtual cut-through switching.

(a) (b) (c) (d)

Fig. 1. The node (switch) internal operation

To memorize which dimension a packet came in and which dimension it came out,
we introduce a one-bit named ‘swap bit.’ To memorize the previous series of packets
has passed whether in even number or in odd number of packets, four one-bits named
‘entry bits’ for each direction are located in the switch. The central routing logic of a
switch contains the swap bit. A pair of unidirectional links connects neighboring
switches for each direction and there are 4 FIFO queues for incoming packets from 4
neighboring switches except for boundary switches.

The usage of the swap bit and entry bits in <Swap selection> is as follows;

0. Each entry bit is preset to 0.
1. If a packet comes through any link, the entry bit of that income direction is

negated.
A. Negate the swap bit.
B. If the dimension determining the swap bit has changed, copy its entry

bit to the swap bit.
C. According to the swap bit;

252 M. Ok and M.-s. Park

i. 1 : the packet go straight to the opposite link of the same dimen-
sion; if it has come in through X-dimension it will go out through
X-dimension and vice-versa. We call this ‘crossing’ the switch.

ii. 0 : the packet go left or right direction for its destination, thus to
the link of the other dimension; if it has come in through X-
dimension it will go out through Y-dimension and vice-versa. We
call this ‘detouring’ the switch.

2. For next incoming packet, go to 1.
<Swap Selection>

The role of the swap bit is to alternate the dimensions of output links on packet by

packet. Each entry bit remembers whether the previous packet of the input links has
crossed or detoured the switch. Through this scenario the packets should be distrib-
uted evenly.

The swap selection extends to the case two series come from both dimensions at
about the same time. The swap bit is determined by a little early-arrived packet than
the other so the little-late packet takes the remained dimension. This technique is in-
herent from deflection routing[16]. Modification to the above scenario has two as-
pects.

− The little-late packet does not execute 1-A and 1-B from <Swap Selection> and the
little-late packets’ entry bit is copied from the swap bit.

− The swap bit should not be changed until the transmission of the little-late packet
has finished, thus the swap bit is not always negated when a next little-early ar-
rived packet determines it.

Fig. 2 depicts the behavior of the swap selection with this modification by an ex-
ample. In Fig. 2(a) 4 packets are approaching to Z, an intermediate node to reach for
D, the destination node. Assume the packet ‘a’ has entered Z first and the packet b has
second. The entry bit of Z’s west link is negated to 1. Let the swap bit was 0(What
value the swap bit was is not important). The packet ‘a’ negates the swap bit to ‘1’.
Then the packet ‘a’ crosses the node Z. If the packet ‘b’ has entered Z while the
packet ‘a’ is still crossing Z then ‘b’ should also cross the node Z according the swap
bit, 1. In this case the entry bit of Z’s north link is copied to 1 from the swap bit. If the
packet ‘b’ has entered Z after the packet ‘a’ has already left Z then ‘b’ copies its entry
bit of Z’ north link (which is now 1) to the swap bit and it should cross the node Z.

Now the packet ‘c’ or ‘d’ would enter Z. If the packet ‘c’ has entered early, it
would detour the node Z. The packet ‘d’ should detour the node Z whether it has en-
tered while the packet ‘c’ is still crossing the node Z or not. Fig. 2(b) shows this case.
If the packet ‘d’ has entered early and the packet ‘b’ has already left Z, ‘d’ would de-
tour the node Z. The packet ‘c’ should detour the node Z whether it has entered while
the packet ‘d’ is still detouring the node Z or not. Fig. 2(c) shows this case. If the
packet ‘b’ is still crossing when ‘d’ has entered the node Z, ‘d’ should also cross the
node Z. If the packet ‘c’ has entered while ‘d’ is still crossing the node Z, ‘c’ should
also cross the node Z. However if the packet ‘c’ has entered after ‘d’ has already
crossed Z, ‘c’ would detour the node Z. This is the case the packets are not distributed
evenly. Note that, the packet ‘c’ should not change the swap bit when ‘b’ was still in
transmitting. This should be better than ‘c’ would wait until it can change the swap

 Minimizing Hotspot Delay by Fully Utilizing the Link Bandwidth on 2D Mesh 253

bit. More importantly all the neighbor nodes before and after the node Z use the swap
selection. The packets are eventually distributed evenly fully utilizing the links.

In summary, by using the swap selection every intermediate node distributes in-
come packets evenly, toward the destination, violating the evenness only not to intro-
duce unnecessary waiting time in the buffer. The packet generated at each node may
select any idle link or be interposed between packets with some adequate priority
level.

D

Z
d a

b
c

ac

b
d

D

Z
ad

b
c

D

Z

(a) (b) (c)

Fig. 2. The packets passing through an intermediate node Z according to the swap bit

3 Non-minimal Swap Routing

This section presents a new routing method to fully utilize the links’ bandwidth in the
paths toward the hotspot. The routing is founded on the swap routing introduced in
Section 2. On 2D mesh any node except boundary nodes has its 4 input links, and the
bandwidth sum of the 4 links is the physical maximum in receiving packets headed to
the node. We exclude any physical link addition to gain more bandwidth, which may
change the topology of mesh and increase the cost of its implementation. As each
node is attached to the mesh by its switch we use the terms a node and a switch inter-
changeably from now on. We say that a node in 2D mesh has the consumption capa-
bility of 4, the number of input links for nodes that means maximum capacity of re-
ceiving each flit of packets passing through the 4 links at any given instant.

We suppose an occasion the hotspot would emerge which some of other nodes
(equals to a switch) has one packet each to send to a node, called hotspot node. Fig.
3(a) shows the movements of packets heading to the hotspot node in a profitable rout-
ing method. The profitable routing method that selects only the shortest paths in this
occasion utilizes only a half of the hotspot node’s consumption capability. The hot-
spot node, D, has another half of its consumption capability unused thus misrouting
method is required, in the manner that some of the shortest paths are extended by the
least additional hop. Without misrouting, packets generated at the black nodes would
suffer evitable blocking delay to eventually enter the node D. The goal of this paper is
to minimize the blocking time in the buffer of each intermediate switch by utilizing
the consumption capability fully as possible.

254 M. Ok and M.-s. Park

D

DY-
axis

DX-
axis

D

S YD

XD

SY-
axis

DY-
axis

SX-
axis

DX-
axis

 (a) (b)

Fig. 3. (a) Black nodes may generate hotspot packets for the node D, and (b) profitable routes
and misroutes for the hotspot node are provided

All the hotspot packets traverse the mesh heading to the destination D as written in
their headers. The proposed routing method is applied at each intermediate switch in
the Fig. 3(b), and two additional black paths emerged from two XD and YD nodes
toward the destination D. The idea behind the additional paths is each node, XD or
YD, sends the same number of packets along both dimensions after receiving any
even number of packets.

Suppose there are 2p nodes that generate one hotspot packet each among black
nodes in the Fig. 3(b). Assume that the number of packets entered the node YD along
SX-axis and that entered XD along DX-axis is the same, h. Assume also that the
number of packets entered the node XD along SY-axis and that entered YD along
DY-axis is the same, v. In this case packets sent by the node S are h along SX-axis,
and v along SY-axis. Then XD sends (h+v)/2 packets along DX-axis and (h+v)/2
along SY-axis, to D and an additional path toward D, respectively. YD shows the
same behavior. For this routing each packet header contains two control bits in addi-
tion to its destination address. It is inherent from [18]. The packet header format is
depicted in Fig. 6, and the meanings of the control bits are as follows;

11 – The packet is heading to (XDest – 0, YDest – 0), that
is, the destination.

01 – The packet is heading to (XDest – 0, YDest – 1), that
is, the node YD. In this case it is on either SX- or
DY-axis and the swap bit of each switch is ignored.

10 – The packet is heading to (XDest – 1, YDest – 0), that
is, the node XD. In this case it is on either SY- or
DX-axis and the swap bit of each switch is ignored.

00 – The packet is heading to (XDest – 0, YDest – 0), the
destination, from XD or YD and it could make a curve,
following the black arrows in the Fig. 3(b), or not.
The swap bits are ignored.

And the routing is divided into three phases.

 Minimizing Hotspot Delay by Fully Utilizing the Link Bandwidth on 2D Mesh 255

• Phase 1 – Destination: (XDest, YDest)

Packets leave their source node with the control bits ’11.’ When they enter any node
over SX- or SY-axis, they are forwarded to either XD or YD.

• Phase 2 - Destination: (XDest – 1, YDest) or (XDest, YDest –1)

Packets advance to either XD with the control bits ’10’ or YD with the control bits
’01.’ When they enter either XD or YD, they are forwarded to the destination, D.

• Phase 3 - Destination: (XDest, YDest)

Packets enter the destination directly or make a curve to the destination. In both cases
the control bit is ‘00’, and any node receiving a packet with ‘00’ should make the link
selection as ‘detouring.’

In the phase 2, if the packets has entered a node over SX-axis, the half of the pack-
ets are destined for YD and the other half are destined for XD to advance toward the
destination, D(Fig. 4(a)). If the packets has entered a node over SY-axis, the half of
the packets are destined for XD and the other half are destined for YD to advance to-
ward the destination, D(Fig. 4(b)). In the phase 3, misrouting occurs with a probabil-
ity 1/2 at the node XD or YD and only these two nodes use (XDest, YDest+1) or
(XDest+1, YDest) for next false direction instantly. If the packet enters D directly the
control bits ‘00’ is of no use since it has arrived at the destination.

SY-
axis

DY-
axis

SX-
axis

DX-
axis XD

YD

D

S

= h = ΣΣ

SY-
axis

DY-
axis

SX-
axis

DX-
axis XD

YD

D

S

= v = ΣΣ
 (a) (b)

Fig. 4. The node XD and YD receive the same number of packets

‘11’ is the initial value of control bits. Once a packet enters a node over SX- or SY-
axis, the control bits are changed into ‘10’ or ‘01’. Packets that starts at a source node
over DX- or DY- axis begins with ‘10’ or ‘01.’ If the packet enters XD or YD, the
bits are changed into ‘00’ at the node and then it enters the destination or makes a
curve to the destination. The proposed routing algorithm is in the Fig. 8. Note that, af-
ter the control bits are changed into ‘10’ or ‘01’, the packet advances along either X-
dimension only or Y-dimension only, until it enters XD or YD. Let ia be the packet
arrival rate at each node over SX-axis then the packet arrival rate at YD along SX-
axis is equal with that at XD along DX-axis.

256 M. Ok and M.-s. Park

=

=
4

1

SX
2

1
)(AR

i

iaYD (1)
=

=
4

1

DX
2

1
)(AR

i

iaXD (2)

Let jb be the packet arrival rate at each node over SY-axis then the packet arrival
rate at XD along SY-axis is equal with that at YD along DY-axis.

=

=
3

1

SY
2

1
)(AR

j

jbXD (3)
=

=
3

1

DY
2

1
)(AR

j

jbYD (4)

In general;

==

+=+
J

j

j

I

i

i baXDXD
11

SYDX
2

1

2

1
)(AR)(AR , (5)

and

==

+=+
J

j

j

I

i

i baYDYD
11

DYSX
2

1

2

1
)(AR)(AR , (6)

where I is the largest hop from the node YD along SX-axis and J is the largest hop
from the node XD along SY-axis.

Packets generated at nodes over SX-axis or SY-axis are included in the above cal-
culation. Therefore the destination D receives p/2 packets through each link, thus all
the 2p packets has arrived the common destination, if we exclude the packets “more
generated” at nodes over either DX-axis or DY-axis than the other axis. For those
packets more than 2 hops are needed to be misrouted but those are not supported by
this routing. Moreover the packets have a straight path to the destination thus misrout-
ing may not be appropriate in respect of resource utilization.

(a) (b) (c) (d)

Fig. 5. Distributions of the source nodes

Each entry bit of the switches memorizes whether even number of packets has en-
tered or not through each input link, except the packets of the control bits ‘00.’ There-
fore the flow of misrouted packets does not affect that of other packets in the distribu-
tion of source nodes (b), (c), or (d) of the Fig. 5. (XDest–1,YDest) or (XDest, YDest–1), the
coordinates of XD or YD, of the routing algorithm, should be changed into either
(XDest+1, YDest) or (XDest, YDest+1) according to the location of the source node.

 Minimizing Hotspot Delay by Fully Utilizing the Link Bandwidth on 2D Mesh 257

The packet arrival is depicted in the Fig. 7, (a) shows the case from source loca-
tions of the Fig. 5(b). White arrows are direct entrances and black arrows are curved
entrances. There are no interferences between the flows of misrouted packets since
their control bits ‘00’ means just ‘detouring’ each intermediate switch and packets
with the control bits ‘00’ do not change each entry bit. Superimposing the Fig. 7(b) on
5(a) makes the case for the Fig. 5(c).

• Deadlock freedom

There is no cycle of packets since the path of misrouted packets starts at a node
only one hop apart from the destination, and the path finishes at the destination.

• Livelock freedom

The path of a misrouted packet is fixed by the control bit ‘00’ thus the packet even-
tually arrives at the destination.

D

D

 (a) (b)

Fig. 6. Packet header format Fig. 7. Packets approaching to the destination

Theorem 1. For the traffic that is centralized to one node on 2D mesh, if all the 4
input links of the node receive packets in their full bandwidth in parallel, the traffic
should be consumed in the minimal time.

Proof. This is the topological and physical limit.

Theorem 2. Under the N-Swap routing the destination node’s 4 input links receive
the packets in their full bandwidths in parallel. The average path length of all the
packets arrived the destination is 1 hop plus the average of each packet’s the shortest
path length.

Proof. Using the swap selection packets reach SX- or SY-axis through the shortest
path in the phase 1. In the phase 2, packets advance to XD or YD through the shortest
path. The node XD has two input links for two input links of the node D and the node
YD has two input links for the other two input links of the node D. The destination
node D’s 4 input links are capable to consume both every two packets from XD and
every two packets from YD. Thus the N-Swap routing utilizes the full bandwidths of
the destination’s 4 input links. Since a half of packets arrives at the destination took 2
hops more than its shortest path in the phase 3, a packet takes the length of its shortest
path plus 1 hop, on average, to arrive at the destination.

XDest YDest SX SY

258 M. Ok and M.-s. Park

Fig. 8. N-Swap Routing Algorithm

Previous works employed multiqueue or bypass buffer to store blocked packets not
to block other flow of packets[7][8]. To prevent starvation packets in the bypass
buffer gets higher priority than those in the input buffer. Bypass buffer is installed as
one central multiqueue as in [7] or as distributed single buffers for each direction as in
[8]. One linear central queue was adopted and its capacity is four packets, in this pa-
per, the same multiqueue capacity in [7]. If a switch designer determine input buffers
with its capacity of multiple packets, the packet at the top of FIFO queue(buffer)
should change its entry bit and the swap bit.

IF the packet’s current coordinates (X, Y) are equal to (XDest, YDest)
EXIT the algorithm.

ENDIF
CASE of SX and SY;

00: /* The packet is making a curve to the destination */
Insert the packet to the queue of link toward the node D.

01: /* The packet is heading to YD */
IF the packet’s current coordinates (X, Y) are equal to (XDest, YDest–1)

THEN change the control bit to 00, and CALL SelectLink.
ELSE Insert the packet to the queue of link toward the node YD.

ENDIF
10: /* The packet is heading to XD */

IF the packet’s current coordinates (X,Y) are equal to (XDest–1, YDest)
THEN change the control bit to 00, and CALL SelectLink.
ELSE Insert the packet to the queue of link toward the node XD.

ENDIF
11: /* The packet has not reached SX- or SY-axis */

CALL SelectLink.
IF the packet’s current Y coordinate is equal to YDest–1;

IF the packets next Y coordinate is equal to YDest
THEN change to control bit to 10.
ELSE change the control bit to 01.

ENDIF
ENDIF
IF the packet’s current X coordinate is equal to XDest–1;

IF the packets next X coordinate is equal to XDest
THEN change the control bit to 01.
ELSE change the control bit to 10.

ENDIF
ENDIF

ENDCASE
SUB SelectLink

CASE of the swap bit;
0: Insert the packet to the queue, of X-dimension link where it entered along Y-

dimension, or of Y-dimension link where it entered along X-dimension.
1: Insert the packet to the queue, of X-dimension link where it entered along X-

dimension, or of Y-dimension link where it entered along Y-dimension.
ENDCASE

ENDSUB

 Minimizing Hotspot Delay by Fully Utilizing the Link Bandwidth on 2D Mesh 259

4 Performance Evaluation

4.1 Simulation Model

The simulations are conducted in a 16x16 2D mesh. A pair of unidirectional links
connects each pair of neighboring switches, and each switch connects to its local
processor through four pairs of unidirectional links. Input buffering is assumed, i.e.,
buffers are partitioned into flits and are associated with input links from neighboring
switches. A flit may contain a predetermined number of bits. The processor generates
packets (assumed to have 20 flits per packet) at time intervals chosen from an expo-
nential distribution. Packets that are generated from the source processor enter the at-
tached switch are immediately enqueued, and those enter a destination switch are im-
mediately dequeued and arrive at the processor. Every simulation has iterated 100
times and the average values are obtained. A packet generated at the source node is
injected at the bottom of an input buffer. Ejection of a packet arrived at its destination
is also done at the bottom of an input buffer.

Three cases of hotspot occasion are simulated to evaluate the effect of non-minimal
paths. Node (8,8), (5,5), and (2,2) are selected as the hotspot nodes, respectively, and
packets from other nodes will be headed to the hotspot node. Communication latency
and throughput[15] are the performance metrics of interest in the simulations. Com-
munication latency is measured from the time a packet is generated at the source node
until the tail flit reaches the destination. Throughput is the average number of packets
that complete transmission per unit time. The issue rate is defined to be the ratio of
the number of packets generated during a simulation to the number of nodes in the
network.

Three routing methods were evaluated, M-Swap, N-Swap and Chaos[17]. M-Swap
is a swap routing that takes only minimal path thus misrouting doesn’t occur (Fig.
3(a)). N-Swap, Non-minimal Swap routing of the Fig. 8, is a swap routing that takes
minimal or non-minimal paths at the probability of 1/2. Chaos is the most relevant
router and the recent one. Latencies and throughputs are measured in unit times.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
6

8

10

12

14

16

18

20

22

24

26

La
te

nc
y

Issue Rate

 Chaos
 MSwap
 NSwap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
5

10

15

20

25

30

35

La
te

nc
y

Issue Rate

 Chaos
 MSwap
 NSwap

(a) Hotspot (8,8) (b) Hotspot (5,5) (c) Hotspot (2,2)

Fig. 9. Average latencies in 3 locations of the hotspot node

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10

15

20

25

30

35

40

45

50

La
te

nc
y

Issue Rate

 Chaos
 MSwap
 NSwap

260 M. Ok and M.-s. Park

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

T
hr

o
ug

hp
ut

Issue Rate

 Chaos
 MSwap
 NSwap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

T
hr

o
ug

hp
ut

Issue Rate

 Chaos
 MSwap
 NSwap

 (a) Hotspot (8,8) (b) Hotspot (5,5) (c) Hotspot (2,2)

Fig. 10. Average throughputs in 3 locations of the hotspot node

4.2 Hotspot Traffic

Traffic patterns may vary by the locations of the hotspot node. Hotspot simulation
was conducted in three cases. In 16x16 mesh a number of nodes would send their
packets to one hotspot node. The central node (8,8) is the first hotspot case. In the Fig.
9(a) the destination hotspot node is surrounded by evenly distributed source nodes
and the expectations that hotspot packets would come through one of four input links
would be all the same for each input link. Thus misrouting achieves hardly any
throughput improvement. For the case the hotspot node locates apart from the center,
the Fig. 9(b), idle input links should work by misrouting for non-minimal paths and
non-minimal swap routing performs much better than the minimal one. Chaos per-
forms over M-Swap but under N-Swap. The reasons are two; firstly, the Chaos
switches the income packet to the first available output link on a profitable path[17].
This chaotic link selection achieves high link utilization, however, does not guarantee
even distribution of income packets for output links. This tendency of unsymmetrical
link selection makes imbalanced usage between input buffers toward the hotspot
node. Although misrouting of Chaos relieves the imbalance, however, its misrouting
is originally not for balanced buffer usage.

Secondly, misrouting of N-Swap routing is devised for full utilization of all the in-
put links of the destination hotspot node. This implies balanced usage among the 4 in-
put link’s bandwidth thus N-Swap shows lower latency in the Fig. 10(b). As the hot-
spot node is more apart from the center, throughput improvement is more apparent.
Fig. 10(c) means link utilization with non-minimal paths is more effective on the per-
formance than that with only the minimal paths.

5 Conclusion

Hotspot is an inevitable situation for many parallel applications. Various approaches
were proposed but the routing method to alleviate hotspot problem without extra
physical links is rare. Without modification of mesh topology a reasonable method is
fully utilizing all the links of the hotspot node. Non-minimal paths are the way for
utilizing the idle links. A new routing method that incorporates both profitable routes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

T
hr

o
ug

hp
ut

Issue Rate

 Chaos
 MSwap
 NSwap

 Minimizing Hotspot Delay by Fully Utilizing the Link Bandwidth on 2D Mesh 261

and misroutes was proposed and approved in the hotspot traffics. In particular this
routing method does not consider congestion to decide on misrouting. Although not
presented in this paper, the proposed routing method showed effectiveness also for
other traffic patterns.

Every node owns its swap bit. This swap bit enables two output links be in trans-
mitting state continuously, simultaneously enabling two input links be in receiving
state. A packet come into the switch might go out through either dimensional link
with the probability of 1/2, which corresponds to one link every hop to the destina-
tion. This property makes the bandwidth of links fully utilized together with minimiz-
ing the buffer occupations until one of the two output links is not available due to the
topological limitation, i.e., the edge nodes. Fully utilizing the link bandwidth and
minimizing the buffer occupation should conduce to the maximal utilization of net-
work resources.

The routing method requires only little addition of hardware and it is relatively
simple. This merit is very important since most of proposed routing methods was not
implemented due to their high complexities[11]. In this respect the proposed routing
method is rather practical.

As virtual cut-through switching defines fixed packet length, i.e., a fixed number of
flits, the proposed routing method assumes only a fixed packet length. However the
proposed routing is able to work with variant packet lengths after appropriate modifi-
cation. Memorizing whether even or odd of flits than that of packets and some adapta-
tion in the flow control may result in such a routing method.

References

1. G. F. Pfister and V. A. Norton, Hot Spot Contention and Combining in Multistage Inter-
connection Networks, IEEE Trans. Computers, vol. 34, (1985) 943-948.

2. Y. Sun, P. Cheng and X. Lin, Barrier Synchronization on Wormhole-routed Networks,
IEEE Trans. Parallel and Distributed Systems, vol. 12, (2001) 583-597.

3. R. S. Hyder and D. A. Wood, Synchronization Hardware for Networks of Workstations:
Performance v.s. cost, in: ACM ICS’96, (1996) 245-252.

4. J. Duato, A. Robles and F. Silla, A Comparison of Router Architectures for Virtual Cut-
Through and Wormhole Switching in a NOW Environment, in: 13th International Parallel
Processing Symposium and 10th Symposium on Parallel and Distributed Processing,
(1999) 240-248.

5. H. S. Lee, H. W. Kim, J. Kim and S. Lee, Adaptive Virtual Cut-through as an Alternative
to Wormhole Routing, in: Proceedings of the 24th International Conference on Parallel
Processing, vol. I, (1995) 68-75.

6. Lionel M. Ni, Wenjian Qiao and Mingyao Yang, Switches and Switch Interconnects, in:
4th International Conference on Massively Parallel Processing Using Optical Interconnec-
tions, (1997) 122-130.

7. J. H. Upadhyay, V. Varavithya and P. Mohapatra, Efficient and Balanced Adaptive Rout-
ing in Two-Dimensional Meshes, in: 1st IEEE Symposium on High-Performance
Computer Architecture, (1995) 112-121.

8. P.-Jen Chuang, J.-Tang Chen and Y.-T. Jiang, Balancing Buffer Utilization in Meshes Us-
ing a “Restricted Area” Concept, IEEE Trans. Parallel and Distributed Systems, vol. 13,
(2002) 814-827.

262 M. Ok and M.-s. Park

9. G. D. Pifarre, L. Gravano, S. A. Felperin, and J. L.C. Sanz, Fully Adaptive Minimal Dead-
lock-Free Packet Routing in Hypercubes, Meshes, and Other Networks: Algorithms and
Simulations, IEEE Trans. Parallel and Distributed Systems, vol. 5, (1994) 247-263.

10. D. Basak, D. K. Panda, Alleviating Consumption Channel Bottleneck in Wormhole-routed
k-ary n-cube Systems, IEEE Trans. Parallel and Distributed Systems, vol. 9, (1998)
481-496.

11. K. Bolding, M. Fulgham and L. Snyder, The Case for Chaotic Adaptive Routing, IEEE
Trans. Computers, vol. 46, (1997) 1281-1997.

12. M. S. Thottethodi, A. R. Lebeck, and S. Mukherjee, BLAM : A High-Performance Rout-
ing Algorithm for Virtual Cut-Through Networks, in: Proceedings of the International Par-
allel and Distributed Processing Symposium, (2003).

13. T. Nguyen and L. Snyder, Performance of Minimal Adaptive Routers, in: Proc. Parallel
Computer Routing and Comm. Workshop, (1994) 60-71.

14. G. D. Pifarre, L. Gravano, G. Denicolay and J. L.C. Sanz, Adaptive Deadlock- and Live-
lock-Free Routing in the Hypercube Network, IEEE Trans. Parallel and Distributed Sys-
tems, vol. 5, (1994) 1121-1139.

15. W.J. Dally, Performance Analysis of k-ary n-cube Interconnection Networks, IEEE Trans.
Computers, vol. 39, no. 6, (1990) 775-785.

16. A. G. Greenberg and B. Hajek, Deflection Routing in Hypercube Networks, IEEE Trans.
Communications, vol. COM-40, (1992) 1070-1081.

17. S. Konstantinidou and L. Snyder, The Chaos Router, IEEE Trans. Computers, vol. 43,
(1994) 1386-1397.

18. M. –H. Ok and M.-S. Park, A Novel Collective Communication Scheme on Packet-
switched 2-D Mesh Interconnection, in: Proc. Int’l Conf. VECPAR ‘2000, (2000) 147-158.

A Shape Optimizing Load Distribution Heuristic
for Parallel Adaptive FEM Computations�

Stefan Schamberger

Universität Paderborn,
Fakultät für Elektrotechnik, Informatik und Mathematik,

Fürstenallee 11, D-33102 Paderborn
schaum@uni-paderborn.de

Abstract. Load balancing plays an important role in parallel numerical
simulations. To address this problem, some general purpose libraries as
well as a number of more specific approaches have been developed. Many
of them base on vertex exchange operations like the Kerninghan-Lin
heuristic which, due to their sequential nature, are hard to parallelize.
Furthermore, libraries like Metis and Jostle primarily minimize the edge-
cut and cannot obey constraints like connectivity and straight partition
boundaries, which are important for some numerical solvers.

In this paper we present a new approach to address the load bal-
ancing problem. In contrast to existing heuristics, we are able to guar-
antee connectivity and the resulting partitions are usually well shaped.
Furthermore, our experiments indicate that we can outperform the two
parallel state-of-the-art libraries Metis and Jostle also according to the
classic metrics like edge-cut and boundary length. The proposed algo-
rithm thereby contains a high degree of natural parallelism, while its
drawback is the long run-time, especially if the parallelism is not ex-
ploited.

Keywords: Parallel FEM computations, load balancing, graph parti-
tioning, diffusion schemes.

1 Introduction

Finite Element Methods (FEM) are used extensively by engineers to analyze a
variety of physical processes which can be expressed via Partial Differential Equa-
tions (PDE). The domain on which the PDEs have to be solved is discretized
into a mesh, and the PDEs are transformed into a set of equations defined on
the mesh’s elements (see e. g. [4]). These can then be solved by iterative methods
such as onjugate Gradient (CG) and Multigrid. Due to the very large amount of
elements needed to obtain an accurate approximation of the original problem,
this method has become a classical application for parallel computers. The paral-
lelization of numerical simulation algorithms usually follows the Single-Program
Multiple-Data (SPMD) paradigm: Each processor executes the same code on

� This work is supported by the German Science Foundation (DFG) project SFB-376.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 263–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

264 S. Schamberger

a different part of the data. This means that the mesh has to be split into P
sub-domains and each sub-domain is then assigned to one of the P processors.
To minimize the overall computation time, all processors should thereby roughly
contain the same amount of elements. Since iterative solution algorithms per-
form mainly local operations, i. e. data dependencies are defined by the mesh,
the parallel algorithm mainly requires communication at the partition bound-
aries. Hence, these should be as small as possible. The described problem can
be expressed as a graph partitioning problem. The mesh is transformed into
a graph where the vertices represent the computational work on the elements
and the edges their interdependencies. Libraries working on graphs are referred
to as general purpose libraries, since they are not provided with any additional
problem related information.

Depending on the application, some areas of the simulation space require a
higher resolution and therefore more elements. Since the location of these areas
is not known beforehand or can even vary over time, the mesh is refined and
coarsened during the computation. However, this can cause an imbalance be-
tween the processors’ load and therefore delay the simulation. To avoid this, the
distribution of elements needs to be rebalanced. The application is interrupted
and the at this program state static repartitioning problem is solved. To keep
the interruption as short as possible, it is necessary to find a new balanced parti-
tioning with small boundaries quickly, with the additional objective not to cause
too many elements to change their processor. Migrating elements can be an ex-
tremely costly operation since a lot of data has to be sent over communication
links and reinserted into complex data structures. Note, that the re-balancing
problem is similar to the initial balancing problem. Modeling it as a graph, the
difference is that the vertices are already assigned to partitions beforehand and
additional migration costs should be considered.

Due to the complexity of the problem, the large input sizes and the given time
constraints, existing libraries that address the graph (re-)partitioning problem
are based on heuristics. Even if approximation algorithms are applied for some
calculations, the overall computation is still a heuristic, because the influence
between the different components has not been theoretically investigated yet.
State-of-the-art graph partitioning libraries like Metis [8], Jostle [19] or Party [15]
follow the multilevel scheme [6]. Vertices of the graph are contracted according to
a matching and a new level consisting of a smaller graph with a similar structure
is generated. This is repeated, until in the lowest level only a small graph remains.
The partitioning problem is then solved for this small graph and vertices in higher
levels are assigned to partitions according to their representatives in lower levels.
Additionally, a local refinement phase (also called uncoarsening phase) is applied
in every level to further enhance the solution. This process finally leads to a par-
titioning of the original graph. Hence, a multilevel algorithm consists of three
important tasks: A matching algorithm, deciding which vertices are combined in
the next level, a global partitioning algorithm applied in the lowest level (which
can be omitted if the number of vertices meets the number of desired partitions),
and a local refinement algorithm improving the quality of a given partitioning

Parallel Adaptive FEM Computations 265

by exchanging vertices. Implementations of the latter are usually based on the
Kerninghan-Lin (KL) heuristic [9], while the local refinement algorithm in Party
is derived from theoretical analysis with Helpful-Sets (HS) [7, 15].

To address the load balancing problem during parallel computations, dis-
tributed versions of the libraries Metis and Jostle have been developed. Both
of them apply about the same multilevel techniques as their single processor
version, but some phases of the computation need special attention due to their
sequential nature. As an example, a coloring of the graph’s vertices is used by
the parallel library ParMetis [18] to assure that during the KL refinement no
two neighboring vertices change their partition simultaneously and therefore de-
stroy the consistency of the data structures. In contrast to Metis where vertices
stay on their partition until a new distribution has been computed, the parallel
version of Jostle [20] maps each sub-domain to a single processor and vertices
which migrate do so already during the computation of the repartitioning. Fur-
thermore, Jostle, apart from the edge-cut minimization, seems to incorporate a
shape optimization presented in [21]. However, since the sources are not avail-
able, we can only make assumptions here. Usually, Metis is very fast while Jostle
takes longer but often computes better solutions.

Another, widely applied geometric approach to partition a mesh is based
on Space-Filling curves (see e. g. [12, 22]). The vertices of the graph are sorted
by a certain recursive scheme covering the whole domain. Then, the now linear
array of vertices is split into equal sized parts, each representing a partition. In
contrast to partitioning heuristics, this method only works if vertex coordinates
are present. It has been shown that this method is extremely fast, but problems
arise if the simulation area contains holes [17] since only the provided (sometimes
misleading) geometric information is used and the structural data is ignored.

While the global edge-cut is the classical metric that most graph partitioners
optimize, it is not necessarily the best metric to follow because it does not model
the real communication and runtime costs of FEM computations as described
in [5]. Hence, different metrics have been implemented inside the local refinement
process modeling the real objectives more closely. In [11], the costs emerging from
vertex transfers is taken into consideration while Metis is capable of minimizing
the sub-domain connectivity as well as the number of boundary vertices.

A completely different approach is undertaken in [2]. Since the convergence
rate of the CGBI domain decomposition solver in the PadFEM environment
depends on the geometric shape of a partition, the integrated load balancer
focuses on iteratively optimizing the aspect ratios by applying a bubble like
algorithm. Although different to the multilevel-schemes, this approach still con-
tains a strictly sequential part and suffers from some other difficulties that are
described in more detail in [16]. However, the latter paper introduces an imple-
mentation that eliminates most of these problems by replacing the sequential
growing mechanism of the bubble framework by a few iterations of the first or-
der diffusion scheme (FOS) [3]. This leads to a graph partitioning algorithm that
contains a high degree of parallelism and produces well shaped partitions. How-
ever, it is not clear how many FOS iterations must be performed and since this
number depends on the graph, a wrong choice leads to bad or even no results.

266 S. Schamberger

In this paper we refine the technique from [16] and extend the FOS by adding
absolute draining. The modified version converges and the properties of the con-
verged state are similar to the state that is reached after a few FOS iterations.
Hence, the termination criterion question mentioned above is solved. Further-
more, we demonstrate that the new resulting heuristic can be successfully ap-
plied to repartition meshes in parallel adaptive FEM simulations and surpasses
state-of-the-art load balancing libraries concerning the solution-quality.

The remaining part of this paper is organized as follows. The next Section
briefly recaptures the bubble frame work and the diffusive operations from [16].
In Sec. 3, we describe the modified FOS scheme which we implemented in the
Party/DB library and illustrate some of its properties. Selected results of a com-
parison between the new heuristic and state-of-the-art load balancing libraries
are presented in Sec. 4.

2 DB - A Diffusive Bubble Algorithm

As already mentioned, the DB algorithm [16] is based on the bubble frame-
work [2]. Algorithms within this framework start with an initial, often randomly
chosen vertex (seed) per partition, and all sub-domains are then grown simulta-
neously in a breadth-first manner. Colliding parts form a common border and
keep on growing along this border – “just like soap bubbles”. After the whole
mesh has been covered and all vertices of the graph have been assigned this
way, each component computes its new center that acts as the seed in the next
iteration. This is usually repeated until a stable state, where the movement of
all seeds is small enough, is reached. This procedure is based on the observation
that within “perfect” bubbles, the center and the seed vertex coincide.

In the DB algorithm, the growth process is implemented via a small number
of FOS iterations. Note, that diffusion in graphs has been studied very well
because it can be applied to solve load balancing problems in various scenarios
(e. g. [1, 3]). The main idea behind applying it in a graph partitioning heuristic is
the fact that load primarily diffuses into densely connected regions of the graph
rather than into sparsely connected ones. Following this observation one can
expect to identify sets of vertices that possess a high number of internal and a
small number of external edges.

Independently for each partition, we place load on some (so called source
vertices) of the graph and run a few FOS iterations. Then, we assign the vertices
to that partition they have obtained most load from. Hence, a partition can crowd
others out of parts of the graph if it itself already contains a higher load nearby.
These dynamical movements are addressed by the bubble framework. During its
iterations, the seeds from which the diffusion process is initiated are rearranged
such that they are finally well distributed over the graph and are preferably
placed within a densely connected region. Two different operations cause this
movement. The first one, called contraction, chooses a single vertex in the center
of each partition containing the maximal load of the according color. This vertex
becomes the new seed (or single source) for the next iteration. However, since

Parallel Adaptive FEM Computations 267

only a few FOS iterations are performed, this will be very likely the same vertex
that initiated the diffusion process in the previous iteration. Hence, no movement
would occur. Therefore, a second operation called consolidation is introduced.
In contrast to the contraction, not a single vertex is assigned as new seed but
the whole partition is used as source. Since more vertices are within the dense
regions of the graph, this operation will direct the partition toward its desired
position and also insures that in the following loops a different vertex contains
the maximum load, as long as the final state has not been reached. The resulting
algorithm is sketched in Fig. 1. As with all other bubble implementations, some
difficulties arise establishing the balance of the partitioning. However, adjusting
the total load of each color (either placed on a single vertex or equally distributed
on the partition) provides a handy method to address this problem [16].

00 Algorithm DB(G, t, s)
01 in each iteration t
02 if t = 1
03 determine-seeds(G)
04 else
05 parallel for each partition p
06 place-load-on-seeds(G, p)
07 load-diffusion(G, p)
08 contraction(G)
09 in each loop s
10 parallel for each partition p
11 place-load-on-parts(G, p)
12 load-diffusion(G, p)
13 π = consolidation(G)
14 return π

Fig. 1. Sketch of the DB algorithm

The drawback of the described im-
plementation is the difficulty in de-
termining the number of FOS itera-
tions to be performed. If too many
iterations are executed, the load dif-
fuses to far into the graph and the
load differences between the different
kinds of load on the vertices vanish.
Hence, it becomes difficult to assign
the vertices to the partitions. On the
other hand, too little iterations inhibit
partition interaction. Therefore, very
little or even no movement will oc-
cur. As a solution, the right number
of FOS iterations must be determined,
but because this number depends on
the graph properties as well as the
current partitioning, and experiments
show that the range of “good selec-
tions” is rather small, this number is
difficult to obtain.

The solution presented here applies an alternative diffusion scheme. This
scheme must provide similar information than the state after some iterations
of the FOS. First, load must diffuse faster into densely connected regions of
the graph, which is important for the movement. Second, in order to guarantee
connectivity, vertices must obtain more load the closer they are to the load
originating vertices. Hence, we want to construct a scheme that converges toward
such solutions.

3 A New Diffusion Scheme with Absolute Draining

In this Section, we introduce an new diffusion scheme. This scheme also con-
verges, but in contrast to the original FOS, not toward the completely balanced

268 S. Schamberger

 1e−06

 1e−05

 1e−04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000
 0

 1

 2

 3

 4

 5

 6

 7

 8

de
lta

 c
ha

ng
e

/ m
ax

 lo
ad

 c
ha

ng
e

de
lta

iteration

delta change
delta

max load change

Fig. 2. FOS/A on the 100×100 Grid. L = |V | load is initially placed on vertex (50,50)
and δA = 0.001. The plot shows Δ, its difference |Δi − Δi−1| between two iterations
and the maximal change of the load on a vertex maxv(|liv − li−1

v |)

load situation. It is disturbed such that the converged solution has similar prop-
erties as the state after some FOS iterations which is described in the last Section.
The disturbance is realized by decreasing the load on each vertex by an absolute
value δA. Note, that if a vertex contains less load than δA, only the existing
load will be subtracted, and therefore load values are still non-negative. To keep
the total load amount in the system constant, all subtracted load will be added
equally to the set of source vertices S ⊆ V . Recall, that for each partition this set
contains either the single seed vertex or all its vertices. Formally, the proposed
scheme can be described as follows.

Definition 1 (FOS/A). Let G = (V, E) be a connected graph and S ⊆ V
be the chosen set of source vertices. The entries of the vector s are either set
to sv = 1/|S|, if v ∈ S, or 0 otherwise. Let δA ≥ 0 be the absolute drain
constant and L > 0 the total load in the system. Furthermore, set α(u,v) =
1 + max {deg(u), deg(v)} for each edge e = (u, v) in G. In iteration i, let liv
denote the load on vertex v and f i

e the flow over edge e. Initially, set l0 = 0 and
Δ0 = L. Then, the iteration scheme FOS/A performs in each iteration i the
following computations:

f i
e=(u,v) =

1
αe
·
(
liu − liv

)
(1)

ti+1
v = liv −

∑
e=(v,∗)

f i
e + svΔi (2)

di+1
v = min

(
ti+1
v , δA

)
(3)

Parallel Adaptive FEM Computations 269

li+1
v = ti+1

v − di+1
v (4)

Δi+1 =
∑
v∈V

di+1
v (5)

Initially, all load is placed on the source vertices. During the first iterations,
this load diffuses into the graph, similar to the original FOS scheme, because
the subtracted load compared to the load amount on a vertex is relatively small.
Since the load spreads into the graph, more and more vertices acquire load and
therefore Δ increases. At some point however, all load of the furthest vertices
is subtracted and sent back to the source, such that no load on these vertices
remains. Hence, the spreading slows down and eventually stops. Fig. 2 shows
some important variables of a sample experiment. We can see that during the first
iterations, Δ increases quickly, but the increase slows down such that |Δi−Δi−1|
becomes finally zero. Consequently, the flow over the edges has reached a stable
state and therefore also the load on each vertex does not change anymore.

4 Experiments

This Section describes our experiments with the Party/DB library. In this library
we have implemented the DB algorithm from [16] and replaced the original
growing mechanism by the proposed FOS/A diffusion scheme.

Unfortunately, in contrast to the graph partitioning problem, there are no
load balancing benchmarks available to the public. This might be due to the
number of involved components that are needed to run numerical simulations
and that are often very problem specific. In order to run comprehensible tests, We
have created a set of benchmark instances as described in [10] which are available
via [13]. While a graph partitioning benchmark only consists out of a single
graph, the evaluation of load balancing heuristics requires a sequence of them.
This sequence reflects the changes of the mesh caused by the refinement and
coarsening procedure and each graph, also called frame, reflects the static mesh at
that point when the load balancing algorithm is started. All benchmarks contain
101 frames, each consisting of around 15000 triangles. Though the instances are
quite small, important observations can already be made while we are still able
to include some examples in this paper. However, due to the space limitations, we
have to restrict our presentation to three instances. Furthermore, we decided to
only include the results of 12 partitionings since we have seen that other partition
numbers lead to very similar results. The same holds for tests with 3-dimensional
meshes created with the modified version of the padfem2 environment. Although
we know that different vertex orderings can influence the results [14], we only
perform one computation per benchmark due to time restrictions.

In the experiments, we compare our implementation to the parallel libraries
of Metis (version 3.1) and Jostle (version 3.0). Both offer a large number of
options. For the presented evaluation, we chose the recommended values from
their manual, respectively, and left the remaining parameters at their default.
This means that Metis operates with an itr value of 1000.0 and Jostle uses

270 S. Schamberger

Fig. 3. Frames 0, 49, 50, 51 and 100 of the ’heat’ benchmark

the options threshold = 20, matching = local, imbalance = 3. Note, that Jostle
seems to ignore the imbalance setting and computes totally balanced partitions,
except for the initial solution where the sequential versions of the libraries are
applied. The Party/DB library is invoked with δA = |V |1/2 and L = |V |, which is
automatically doubled in case of an empty vertex stay after the diffusion process.

To measure the quality of a partitioning, a number of metrics are possible.
The traditional one is the edge-cut, that is the number of edges between different
partitions, but it is known that this usually does not model the real costs [5].

Parallel Adaptive FEM Computations 271

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

ba
la

nc
e

 20

 30

 40

 50

 60

 70

 80

 90

ex
. e

dg
es

 (
m

ax
)

 200

 250

 300

 350

 400

 450

 500

 550

 600

ex
. e

dg
es

 (
su

m
)

 20

 30

 40

 50

 60

 70

 80

 90

bo
un

da
ry

 (
m

ax
)

 200

 250

 300

 350

 400

 450

 500

 550

 600

bo
un

da
ry

 (
su

m
)

 40

 60

 80

 100

 120

 140

 160

 180

co
m

m
un

ic
at

io
n

(m
ax

)

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

co
m

m
un

ic
at

io
n

(s
um

)

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

di
am

et
er

 (
m

ax
)

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

di
am

et
er

 (
su

m
)

 0

 200

 400

 600

 800

 1000

 1200

m
ig

ra
tio

n
(m

ax
)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

m
ig

ra
tio

n
(s

um
)

Fig. 4. Results of all 101 frames of the ’heat’ benchmark for Metis (blue triangles),
Jostle (red squares) and Party/DB (green pentagons)

Depending on the application, some of the metrics might be more important
than others, and more information is provided if we list them separately. The
metrics included in out tests can be described as follows: External edges: Number
of edges that are incident to exactly one vertex of partition p. Boundary vertices:
Number of vertices of partition p that are adjacent to at least one vertex from a
different partition. Send volume: The amount of outgoing information is the sum
of the adjacent partitions different to p that each vertex residing inside partition
p has. Receive volume: The amount of incoming information is the number of
vertices of partitions different to p adjacent to at least one vertex of partition p.
Diameter: The longest shortest path between two vertices of the same partition.
Infinity, if the partition is not connected. Outgoing migration: Number of vertices

272 S. Schamberger

Fig. 5. Frames 0, 49, 50, 51 and 100 of the ’slowtric’ benchmark

that have to be migrated to a different partition. Incoming migration: Number
of vertices that have to be migrated from a different partition. Furthermore, the
quality of a partitioning depends on its balance. A less balanced solution does
not necessarily cause problems during the computation, but of course allows
other metrics to improve further and makes comparisons less meaningful. Please
note that we have omitted the run-times since the Party/DB library is some
magnitudes slower then its competitors.

Parallel Adaptive FEM Computations 273

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

ba
la

nc
e

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

ex
. e

dg
es

 (
m

ax
)

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

ex
. e

dg
es

 (
su

m
)

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

bo
un

da
ry

 (
m

ax
)

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

bo
un

da
ry

 (
su

m
)

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

co
m

m
un

ic
at

io
n

(m
ax

)

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

co
m

m
un

ic
at

io
n

(s
um

)

 70

 80

 90

 100

 110

 120

 130

 140

di
am

et
er

 (
m

ax
)

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

di
am

et
er

 (
su

m
)

 0

 500

 1000

 1500

 2000

 2500

 3000

m
ig

ra
tio

n
(m

ax
)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

m
ig

ra
tio

n
(s

um
)

Fig. 6. Results of all 101 frames of the ’slowtric’ benchmark for Metis (blue triangles),
Jostle (red squares) and Party/DB (green pentagons)

In addition, for the listed metrics we consider three different norms. Given
the values x1, . . . , xP , the norms are defined as follows: l1(X) := x1 + . . . + xP ,
l2(X) := (x2

1+ · · ·+x2
P)1/2 and l∞(X) := maxi=1..P xi. The l1-norm (summation

norm) is a global norm. The global edge cut belongs into this category (it equals
half the external edges in this norm). In contrast to the l1-norm, the l∞-norm
(maximum norm) is a local norm only considering the worst value. This norm is
favorable if synchronized processes are involved. The l2-norm (Euclidean norm)
lays in between the l1 and the l∞-norm and reflects the global situation as well
as local peaks. However, due to space limitations, we omit the l2-norm here and
also combine some of the metrics.

274 S. Schamberger

Fig. 7. Frames 0, 49, 50, 51 and 100 of the ’bubbles’ benchmark

The first example is derived from a heat simulation on a square cooker with
four plates. Fig.3 shows some frames of the mesh and the computed partitions,
respectively. At the beginning, the area around the upper left plate is refined
more deeply. This changes over the simulation time toward the lower right plate
as indicated in the left column. The solutions of Metis are shown in the middle
left column. While the initial solution looks acceptable, there seem to be some
problems in later balancing steps. A closer look to e. g. frame 50 reveals that
one partition is degenerated into three parts, one of them only consisting out of

Parallel Adaptive FEM Computations 275

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

ba
la

nc
e

 50

 60

 70

 80

 90

 100

 110

 120

ex
. e

dg
es

 (
m

ax
)

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

ex
. e

dg
es

 (
su

m
)

 50

 60

 70

 80

 90

 100

 110

bo
un

da
ry

 (
m

ax
)

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

bo
un

da
ry

 (
su

m
)

 100

 120

 140

 160

 180

 200

 220

 240

co
m

m
un

ic
at

io
n

(m
ax

)

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

co
m

m
un

ic
at

io
n

(s
um

)

 50

 60

 70

 80

 90

 100

 110

di
am

et
er

 (
m

ax
)

 550

 600

 650

 700

 750

 800

 850

 900

 950

di
am

et
er

 (
su

m
)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

m
ig

ra
tio

n
(m

ax
)

 0

 2000

 4000

 6000

 8000

 10000

 12000

m
ig

ra
tio

n
(s

um
)

Fig. 8. Results of all 101 frames of the ’bubbles’ benchmark for Metis (blue triangles),
Jostle (red squares) and Party/DB (green pentagons)

two vertices. Metis applies a local exchange heuristic that usually takes care of a
few isolated vertices and assigns them to adjacent partitions. However, we guess
that this problem is related to the parallelization of the exchange procedure.
The distributions calculated with Jostle (middle right) are usually of a better
shape, though partitions are sometimes disconnected. Party/DB guarantees con-
nectivity, but shows a few balancing problems in this benchmark, which becomes
clearer in Fig. 4 which shows the recorded metrics. The left column contains the
data according to the l1-norm while on the right side the l∞-norm has been
applied. The first row contains the balance, displayed as the maximal size of
a partition. The next four rows contain the edge-cut, the number of boundary
vertices, the communication volume (send and receive volumes are added) and

276 S. Schamberger

the partition diameter. One can see that the values of the solutions computed
by Metis are higher than those for the partitionings obtained with Jostle or
Party/DB. This is a general observation and holds for all of our benchmark sets.
Looking at the diameter, Jostle and especially Metis compute sometimes dis-
connected domains. The last row displays the migration (outgoing and incoming
elements are added). Here, Metis seems to follow a different strategy than the
two other libraries, moving either very little or a huge amount of data while the
migration volume of Jostle and Party/DB is more constant over the frames.

Fig. 5 shows some frames of the ’slowtric’ benchmark. Here, the mesh is gen-
erated according to three circles rotating around the center of the squared sim-
ulation area. The circle sizes differ and due to a similar attractor placed in each
of the circles, the area around the smaller circles is refined more. The resulting
12 partitionings are better shaped if using Jostle or Party/DB than if applying
Metis. Applying Metis, partitions are often thin or contain long extensions into
their neighbors, which both increases the boundary length and communication
volumes as well as deteriorates the partition shapes. When looking at the par-
tition movement, it is interesting too see that domains in deeply refined areas
(e. g. around the smallest circle) try to follow these locations. This property is
even more distinct in the solutions obtained with Party/DB (right). Further-
more, the latter library finds the best solutions concerning the classic metrics,
computes straighter boundaries and also guarantees connected domains. Fig.6
displays the numerical data.

The last benchmark presented in Fig. 7 is as well created by moving some
circles over the squared simulation area. In contrast to the last experiment how-
ever, the movement in the ’bubbles’ instance is not continuous, but the refined
areas disappear on the upper edge of the simulation space and reappear on the
lower one. Also, the attractors are not placed in the circle centers but closer to
the lower side. The idea is to simulate a higher computational complexity caused
by some turbulences. Although the discontinuous movements will very unlikely
appear in real world applications, it is a good example for a fast changing mesh.
The numerical results shown in figure 8 are similar to the previous two experi-
ments and the evaluation of this as well as of the remaining examples that can
be found in [13] is left to the reader.

5 Conclusion and Future Work

In this paper, we have introduced a new heuristic to balance load in parallel
adaptive FEM computations. Replacing a former implementation, the proposed
diffusion scheme FOS/A increases the reliability of the growing algorithm in the
bubble framework. Integrated into the prototypic library Party/DB, the latter
computes solutions that outperform those obtained with Jostle and especially
Metis concerning all considered metrics. However, since the run-time of the cur-
rent version is indiscussable high it is not applicable in practice. Nevertheless,
due to the obtained solution qualities, we think that further investigations are
justified. Besides the parallelization, the run-time could be further reduced, e. g.
by adopting the multilevel paradigm or applying a faster diffusion scheme.

Parallel Adaptive FEM Computations 277

References
[1] G. Cybenko. Load balancing for distributed memory multiprocessors. Parallel

and Distributed Computing, 7:279–301, 1989.
[2] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Shape-optimized mesh

partitioning and load balancing for parallel adaptive FEM. Parallel Computing,
26:1555–1581, 2000.

[3] R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on
heterogeneous networks. Theory of Computing Systems, 35:305–320, 2002.

[4] G. Fox, R. Williams, and P. Messina. Parallel Computing Works! Morgan Kauf-
mann, 1994.

[5] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no
clothes? In Irregular’98, number 1457 in LNCS, pages 218–225, 1998.

[6] B. Hendrickson and R. Leland. A multi-level algorithm for partitioning graphs.
In Proc. of Supercomputing’95, 1995.

[7] J. Hromkovic and B. Monien. The bisection problem for graphs of degree 4. In
Proc. of Mathematical Foundations of Computer Science (MFCS ’91), volume 520
of LNCS, pages 211–220, 1991.

[8] G. Karypis and V. Kumar. MeTis: A Software Package for Partitioning Unstrc-
tured Graphs, Partitioning Meshes, and Computing Fill Reducing Orderings of
Sparse Matrices, Version 4.0, 1998.

[9] B. W. Kernighan and S. Lin. An efficient heuristic for partitioning graphs. Bell
Systems Technical Journal, 49:291–308, 1970.

[10] O. Marquardt and S. Schamberger. Open benchmarks for load balancing heuristics
in parallel adaptive finite element computations. Submitted to PDPTA’05.

[11] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured
meshes. Journal of Parallel and Distributed Computing, 52(2):150–177, 1998.

[12] H. Sagan. Space Filling Curves. Springer, 1994.
[13] S. Schamberger. http://www.upb.de/cs/schaum/benchmark.html.
[14] S. Schamberger. Improvements to the helpful-set heuristic and a new evaluation

scheme for graphs-partitioners. In Intern. Conf. on Computational Science and
its Applications, ICCSA’03, number 2667 in LNCS, pages 49–59, 2003.

[15] S. Schamberger. Graph partitioning with the Party library: Helpful-sets in prac-
tice. In Computer Architecture and High Performance Computing, SBAC-PAD’04,
pages 198–205, 2004.

[16] S. Schamberger. On partitioning FEM graphs using diffusion. In HPGC, Intern.
Parallel and Distributed Processing Symposium, IPDPS’04, page 277 (CD), 2004.

[17] S. Schamberger and J. M. Wierum. Graph partitioning in scientific simulations:
Multilevel schemes vs. space-filling curves. In Parallel Computing Technologies,
PACT’03, number 2763 in LNCS, pages 165–179, 2003.

[18] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes for
repartitioning of adaptive meshes. J. Parallel Distributed Computing, 47(2):109–
124, 1997.

[19] C. Walshaw. The parallel JOSTLE library user guide: Version 3.0, 2002.
[20] C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh

partitioning. Parallel Computing, 26(12):1635–1660, 2000.
[21] C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel mesh parti-

tioning for optimising domain shape. Intl. J. High Performance Comput. Appl.,
13(4):334–353, 1999.

[22] G. Zumbusch. Parallel Multilevel Methods: Adaptive Mesh Refinement and Load-
balancing. Teubner, 2003.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 278 – 287, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Performance Analysis of Applying Replica Selection
Technology for Data Grid Environments*

Chao-Tung Yang1,†, Chun-Hsiang Chen1, Kuan-Ching Li2, and Ching-Hsien Hsu3

1 High-Performance Computing Laboratory,
Department of Computer Science and Information Engineering,

Tunghai University, Taichung 40704, Taiwan
ctyang@mail.thu.edu.tw

2 Parallel and Distributed Processing Center,
Department of Computer Science and Information Management,

Providence University, Taichung 43301, Taiwan
kuancli@pu.edu.tw

3 Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu 300, Taiwan

chh@chu.edu.tw

Abstract. The Data Grid enables the sharing, selection, and connection of a
wide variety of geographically distributed computational and storage resources
for solving large-scale data intensive scientific applications. Such technology
efficiently manage and transfer terabytes or even petabytes of data for data-
intensive, high-performance computing applications in wide-area, distributed
computing environments. Replica selection process allows an application to
choose a replica from replica catalog, based on its performance and data access
features. In this paper, we build a Grid environment based on three existing PC
Cluster environments and perform performance analysis of data transfers using
GridFTP protocol over these systems. In addition, based on experimental
results, it is proposed a cost model to pick the best replica, in real and dynamic
network situations.

Keywords: Grid computing, Data Grid, Replica selection, Globus, GridFTP.

1 Introduction

Grid computing is utilization of many computers’ resources in a network to a single
problem at the same time - usually to a scientific or technical problem that requires a
great number of computer processing cycles or access to large amounts of data. A
Grid computing environment provides a platform for scientific applications and
physical experiments. A Grid is a large-scale virtual organization which resources are
shared in order to solve problems [4, 7, 9, 10, 11 12]. Grid computing is distributed
computing taken to the next evolutionary level. The goal is to create the vision of

* This paper is supported in part by NSC Taiwan (National Science Council), under grants no.

NSC92-2213-E-029-025, NSC92-2119-M-002-024, NSC 93-2119-M-002-004 and NSC93-
2213-E-029-026.

† The corresponding author.

 Performance Analysis of Applying Replica Selection Technology 279

large and powerful self-managing virtual computer, which is a huge collection of
connected heterogeneous systems. The emerging mechanism is resources sharing
through the availability of high bandwidth network. The “computational Grid” is a
term used to provider the users a better performance, especially in terms of speed and
throughput. The term “Data Grid” aggregate distributed resources to produce results
for large size problems. Most of these Data Grid applications are executed
simultaneously and access a large number of shared data files in Grid.

In certain data intensive scientific applications, such as high-energy physics,
bioinformatics applications and astrophysical virtual observatory, we confront with
huge amount of data. A Data Grid provides two essential basic services, which are a
secure, reliable, efficient data transport protocol and replica management [2]. The
high-speed transport protocol, GridFTP, extends the popular FTP protocol with some
new features required for Data Grid applications, such as partial file transfer and
third-party transfer [5]. The replica management service take advantage of replica
catalog with GridFTP transfer to provide for the creation, registration, location and
management of data replicas [1].

In this paper, we build a Grid environment based on three existing PC Cluster
environments and perform performance analysis of data transfers using GridFTP
protocol over these systems. In addition, based on experimental results, it is proposed
a cost model to pick the best replica, in real and dynamic network situations. In this
paper, we propose a cost model according to the three significant parameters: network
bandwidth, CPU load and I/O state. Although the network situation is constantly
changing and the storage equipments are busy or idle, we can use our cost model to
determine the best replica immediately. The replica selection can be conducted
accurately because our cost model is based on the system monitoring information that
update continuously.

2 Background Review

2.1 Globus Toolkit

The Globus Project [10, 11, 12] provides software tools that make it easier to build
computational Grids and Grid-based applications. These tools are collectively called
The Globus Toolkit. The Globus Toolkit is used by many organizations to build
computational Grids that can support their applications. The composition of the
Globus Toolkit can be pictured as three pillars: Resource Management, Information
Services, and Data Management. Each pillar represents a primary component of the
Globus Toolkit and makes use of a common foundation of security. GRAM
implements a resource management protocol, MDS implements an information
services protocol, and GridFTP implements a data transfer protocol. They all use the
GSI security protocol at the connection layer [8, 11, 12, 13].

2.2 NWS

The Network Weather Service (NWS) [16] is a generalized and distributed
monitoring system for producing short-term performance forecasts based on historical
performance measurements. The goal of the system is to dynamically characterize and

280 C.-T. Yang et al.

forecast the performance deliverable at the application level from a set of network and
computational resources. It is composed of three component processes:

− nws_nameserver: implements a naming and discovery service used to manage a
system of nws_sensor and nws_memory,

− nws_memory: provides persistent storage for the measurement data collected by the
NWS deployment,

− nws_sensor: gathers performance measurements from a specified resource and
communicates it to a set of nws_memory specified on the command line.

A typical installation would involve one nws_nameserver, one or more
nws_memory (which may reside on different machines), and a nws_sensor running on
each machine for which resources are to be monitored. The system includes sensors
for end-to-end TCP/IP performance (bandwidth and latency), available CPU
percentage, and available non-paged memory.

2.3 Sysstat Utilities

The Sysstat [15] utilities are a collection of performance monitoring tools for Linux
OS, which sysstat package contains the sar, mpstat, and iostat commands. The sar
command collects and reports system activity information. This information can also
be saved in a system activity file for future inspection. The iostat command reports
CPU statistics and I/O statistics for tty devices and disks. The statistics reported by
sar concern I/O transfer rates, paging activity, process-related activities, interrupts,
network activity, memory and swap space utilization, CPU utilization, kernel
activities, and tty statistics, among others. Both uniprocessor (UP) and Symmetric
multiprocessor (SMP) machines are fully supported.

3 Replica Selection

3.1 Replica Selection Scenario

The system established in this research used the following architecture. Figure 1
shows our proposed replica selection model, to show how a client identifies the best
location for a desired replica transfer.

At first, the client login at the site local site and execute parallel applications in the
Data Grid platform. This application checks the files are located in local site or not. If
they are present at the local site, the application accesses them immediately.
Otherwise, the application passes the logical file names to replica catalog server,
which returns a list of physical locations for all registered copies. The application
passes this list of replica locations to a replica selection server, which identifies the
destination locations of storage system for all candidate data transfer operations.

The replica selection server sends the possible destination locations to information
server, which provides the performance of measurements and predictions of three
system factors, as described in next section. According to these estimates, the replica
selection server chooses the best replica location and returns location information to
the parallel application, which receives the replica through GridFTP. Once finished
the application’s computation, the application returns the results to user.

 Performance Analysis of Applying Replica Selection Technology 281

Fig. 1. Replica selection scenario

3.2 System Factors

We propose a replication selection model for Data Grid environments. In this
environment, we can treat a biological database as a replica of Data Grid. When we
execute large-scale data intensive applications in these environments, a site has both
data stores and computational capabilities. To determine the best database from many
of same replications is a significant problem. In our model, we consider three system
factors that affect the replica selection:

− Network bandwidth: Network bandwidth is one of the most significant factors in
Data Grid, since the size of a data file in Data Grid environment is usually very
large. In other words, the data file transfer time is tightly dependent on network
bandwidth situations. Because network bandwidth is unstable and dynamic factor,
we should often measure and predict it as most accurate as possible. NWS
(Network Weather Service) is a powerful toolkit for such purpose,

− CPU load: a Grid platform consists of a number of heterogeneous systems, built
with different system architectures, e.g., cluster platforms, supercomputers, PCs.
CPU load is a dynamic system factor, and if the CPU load of a system is heavy, it
will certainly affect the data file download process from this site. The measurement
of CPU status is done through the Globus Toolkit / MDS,

− I/O state: Data Grid nodes consist of different heterogeneous storage systems. The
size of data in Data Grid is huge. If I/O state of the site that we would like to
download file from is very busy, it will directly affect the data transfer
performance. We measure the I/O state using sysstat utilities.

3.3 Replica Selection Cost Model

The target function of a cost model for distributed and replicated data storage is the
score of information from information service. We listed different influencing factors

282 C.-T. Yang et al.

for our cost model in the previous section. However, we have to express these factors
within a mathematical notation for further analysis. We assume node I is the local site
which the user or application is logged in, while node j possesses the replica which
the user or application wanted. The seven system parameters in our replica selection
cost model are:

−
jiScore − : The score high or low represents the user or application acquiring the

replica effectively or not is from node I to node j,
− BW

jiP−
: The percentage of bandwidth from node I to node j. In other words, the

current bandwidth divided the highest theoretical bandwidth,
− BWW : The weight of the network bandwidth defined by the administrator of the

Data Grid,
− CPU

jP : The percentage of CPU idles of node j,

− CPUW : The weight of the CPU load defined by the administrator of the Data Grid,
− OI

jP / : The percentage of I/O idles of node j,

− OIW / : The weight of the I/O state defined by the administrator of the Data Grid,

According to the given three system factors, we define the following general
formula as:

OIOI
j

CPUCPU
j

BWBW
jiji WPWPWPScore // ⋅+⋅+⋅= −− (1)

In this formula, three influencing factors: BWW , CPUW , and OIW / , described as the
weights of network bandwidth, CPU, and I/O. These weights can be determined by
the administrator of the Data Grid organization. According to different attributes of
storage systems in Data Grid nodes, administrator can decide for different weights,
because some storage equipment does not affect CPU load. After several
experimental measurements, we consider that network bandwidth is the most
significant factor, influencing directly the data transfer time. When we perform data
transfer using GridFTP protocol, we discover that the CPU and I/O statuses slightly
affect the performance of data transfer. In our Data Grid environment, we define the
values as 80%, 10%, and 10%, respectively.

4 Experimental Environments and Results

In this section, there are experimental results using GridFTP protocol. First, we
measure and compare the FTP with GridFTP, as their file transfer time. Secondly, we
focused in the parallel data transfer in this paper, measuring and comparing the
GridFTP with 1, 2, 4, 8 and 16 TCP streams of file transfer time.

The Data Grid testbed consisting of three Linux PC clusters is built as:

− THU site: four PCs with dual AMD AthlonMP 2.0GHz processors, 1GB DDR
memory, 60GB HD, 1Gbps network bandwidth,

− Li-Zen site: four PCs with Intel Celeron 900MHz processor, 256MB DDR
memory, 10GB HD, 30 Mbps network bandwidth,

− HIT site: four PCs with Intel P4 2.8GHz processors, 512MB DDR memory, 80GB
HD, 1Gbps network bandwidth.

 Performance Analysis of Applying Replica Selection Technology 283

Figure 2 shows the hardware and network configuration of our Data Grid testbed.
The THU site is located in Tunghai University, Taichung City; Li-Zen site is located
at Li-Zen High School, Taichung County, while HIT site is located in Hsiuping
Institute of Technology, Taichung County, all in Taiwan.

Fig. 2. Our Data Grid testbed

4.1 FTP Versus GridFTP

The Globus Project surveyed available protocols and technologies, implemented some
prototypes, and settled on using FTP and its existing extensions as a base, and then
extending it again to add missing required functionality. The Globus alliance propose
a common data transfer and access protocol named GridFTP that provides secure,
efficient data movement in Grid environments. This protocol, which extends the
standard FTP protocol, provides a superset of the features offered by the various Grid
storage systems currently in use.

In Grid environments, access to distributed data is typically as important as access
to distributed computational resources. Distributed scientific and engineering
applications require transfers of large amounts of data between storage systems, and
access to large amounts of data by many geographically distributed applications and
users for analyzing and visualization. We note that GridFTP protocol is extended
from FTP protocol, and suitable for Grid environments. Figure 3 shows the
performance of FTP and GridFTP by transferring four different file sizes. We
transferred these files (256, 512, 1024 and 2048 megabytes) from THU site alpha01 to
HIT site gridhit3 in our first experiment.

4.2 GridFTP with Parallel Data Transfer

Using multiple TCP streams can improve aggregate bandwidth over using a single
TCP stream in WAN environments. We apply this feature of GridFTP protocol to
transfer different sizes files in Data Grid environments. GridFTP (as well as normal
FTP) defines multiple wire protocols, or MODES, for the data channel. Most normal

284 C.-T. Yang et al.

FTP servers only implement stream mode, i.e., the bytes flow in order over a single
TCP connection. GridFTP defaults to this mode so that it is compatible with normal
FTP servers.

FTP versus GridFTP

32
.0

7

63
.6

9 12
5.

77

25
4.

61

30
.3

1

58
.6

7 10
9.

57

22
0.

84

0

50

100

150

200

250

300

256 512 1024 2048

File Sizes (MB)

F
ile

 T
ra

ns
fe

r T
im

e
(s

ec
)

FTP

GridFTP

Fig. 3. FTP versus GridFTP

However, GridFTP has another mode, called Extended Block Mode, or MODE E.
This mode sends the data over the data channel in blocks. Each block consists of 8
bits of flags, a 64 bit integer indicating the offset from the start of the transfer, and a
64 bit integer indicating the length of the block in bytes, followed by a payload of
length bytes. Because the offset and length are provided, out of order arrival is
acceptable, i.e., the 10th block could arrive before the 9th because you know explicitly
where it belongs. This allows us to use multiple TCP channels. If you use the
parallelism option, globus-url-copy automatically puts the servers into MODE E.
Note that parallel data transfer with one TCP stream is not the same as no parallel
data transfer at all. Both will use a single stream, but the default will use stream mode
and the parallel data transfer with one TCP stream will use mode E [12].

GridFTP with Parallel Data Transfer

29
.0

8 66
.8

9

14
0.

50

26
8.

46

28
.5

2 62
.2

8

13
4.

51

25
3.

53

28
.0

8 60
.3

4

13
0.

09

23
8.

59

28
.8

9 58
.7

7

12
6.

24

23
2.

24

28
.8

3 56
.5

4

11
6.

58

22
8.

00

56
.3

2

11
1.

17

22
0.

80

28
.9

9

0

50

100

150

200

250

300

256 512 1024 2048

File Sizes (MB)

F
ile

 T
ra

ns
fe

r T
im

e
(s

ec
)

GridFTP with no Parallel Data Transfer

GridFTP with 1 TCP Stream

GridFTP with 2 TCP Streams

GridFTP with 4 TCP Streams

GridFTP with 8 TCP Streams

GridFTP with 16 TCP Streams

Fig. 4. GridFTP with parallel data transfer

The parallelism option is used by the source data note to control how many parallel
data connections may be established to each destination data node. Figure 4 shows the

 Performance Analysis of Applying Replica Selection Technology 285

performance of GridFTP transferring 256, 512, 1024 and 2048 megabytes files with 1,
2, 4, 8 and 16 TCP streams from THU site alpha02 to Li-Zen site lz04. According to
the experiment result, we observed that parallel data transfer technique showed better
performance for larger file sizes. Parallel data transfer really improves aggregate
bandwidth, with the establishment of multiple data channels.

4.3 Replica Selection Cost Model

According to the replica selection scenario in 3.1, a user logins the local site THU site
alpha1, and specifies the characteristics of the desired data and passes this attribute
description to replica catalog server. The replica catalog server queries its database
and produces a list of logical files that contain data with the specified characteristics.
The replica catalog server returns the information of physical locations for all
registered replicas of the desired logical files. In this experiment, there is only one
logical file, file-a, conform to user’s request, and the size of file-a is 1024 megabytes.

Table 1. The value of replica selection cost model and file transfer time

alpha1 Alpha4 hit0 lz02
BW

jiP−
 88.25 29.09 20.91

CPU
jP 98.67 99.56 98.33

OI
jP / 2.88 100.00 3.78

Replica Selection Cost model 80.76 43.228 26.939
Practical Data transfer time 101.9 128.09 164.99

(a) (b)

Fig. 5. GUI of replica selection cost model program

286 C.-T. Yang et al.

Next, the user passes this list of replica locations to the replica selection server,
which identifies the destination storage system locations for all candidate data transfer
operations. There are three replicas mapping to the logical file file-a. These three
replicas are individually located at different sites, alpha4, hit0, and lz02. The replica
selection server sends the candidate destination locations to the information server
[17], which provide the three system factors mentioned in 3.2. Based on the replica
cost model referred in 3.3, the replica selection server chooses the best replica and
transfers it to the local site alpha1 by GridFTP. Table 1 shows the values of system
factors and the scores of the replica selection cost model, and the physical file transfer
time. According to discussions given in 3.3, we implemented a replica selection cost
model computer program. We also executed the program in our Data Grid testbed.
Because the program is developed using Java programming language, we can execute
it in any computing platform with JVM. Fig. 5(a) shows costs that are calculated
based on the three system factors (the percentage of CPU idle, I/O idle and bandwidth
from other sites) to alpha1. Figure 5(b) displays the average value based on the
selected time scale, which is adjustable on the top scroll bar. We also can get the sort
list of the costs by clicking the “Cost” button.

5 Conclusions and Future Work

In this paper, we have presented the design and implementation of two fundamental
services. The GridFTP protocol was extended from FTP protocol, and it provides
beneficial features. In this research paper, we focused in parallel data transfer issues.
After measuring the performance of GridFTP with parallel data transfer feature, we
confirm that such technology improves data transfer. After measuring the
performance of FTP and GridFTP with four different file sizes, we could observe that
even file size is 2 gigabytes; the data transfer time is similar. However, we measured
the performance of GridFTP with 1, 2, 4, 8 and 16 TCP streams. We are sure that the
parallel data transfer technology efficiently saves data transfer time. After calculating
the score of replica selection cost model, we can sort a list of replicas from the most
efficient replica to worst one. Therefore, our cost model can provide users or
applications the best choice mechanism for replica selection.

As future work, there are three investigations will be carried out from this research.
First, although we have employed the parallel data transfer feature to improve the
performance of data transfer, there is another striped data transfer feature that can
improve aggregate bandwidth. Second, we will consider how to determine the system
factors weight and refer to more system factors in the replica selection cost model.
Third and last one, we will extend our Data Grid testbed for analyzing the
performance of replica selection in a dynamic and larger number of sites environment.

References

1. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnal, S. Tuecke, “Data Management and Transfer in High Performance
Computational Grid Environments,” Parallel Computing, Vol. 28 (5), pp. 749-771, May
2002.

 Performance Analysis of Applying Replica Selection Technology 287

2. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnel, S. Tuecke, “Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive Computing,” IEEE Mass Storage
Conference, 2001.

3. B. Allcock, S. Tuecke, I. Foster, A. Chervenak, and C. Kesselman, “Protocols and Services
for Distributed Data-Intensive Science,” ACAT2000 Proceedings, pp. 161-163, 2000.

4. K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, “Grid Information Services for
Distributed Resource Sharing,” Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10), IEEE CS Press, August 2001.

5. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith and S. Tuecke,
“A Resource Management Architecture for Metacomputing Systems,” Proc. IPPS/SPDP
‘98 Workshop on Job Scheduling Strategies for Parallel Processing, pp. 62-82, 1998.

6. R. L. De, C. Costa and S. Lifschitz, “Database Allocation Strategies for Parallel BLAST
Evaluation on Clusters”, Proceedings of the Distributed and Parallel Databases, Vol. 13,
Issue1, pp. 99-127, Hingham, MA, USA, January 2003.

7. I. Foster, “The Grid: A New Infrastructure for 21st Century Science,” Physics Today,
55(2):42-47, 2002.

8. I. Foster, C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Intl J.
Supercomputer Applications, 11(2):115-128, 1997.

9. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan-Kaufmann, 1999.

10. I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” Intl J. Supercomputer Applications, 15(3), 2001.

11. Global Grid Forum, http://www.ggf.org/
12. The Globus Project, http://www.globus.org/
13. Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks/
14. SETI@home: Search for Extraterrestrial Intelligence at home, http://setiathome.ssl.

berkeley. edu/
15. SYSSTAT utilities home page, http://perso.wanadoo.fr/sebastien.godard/
16. R. Wolski, N. Spring and J. Hayes, “The Network Weather Service: A Distributed

Resource Performance Forecasting Service for Metacomputing,” Journal of Future
Generation Computing Systems, Vol. 15, No. 5-6, pp. 757-768, October 1999.

17. X. Zhang, J. Freschl, and J. Schopf, “A Performance Study of Monitoring and Information
Services for Distributed Systems,” Proceedings of HPDC, August 2003.

RAxML-OMP: An Efficient Program for

Phylogenetic Inference on SMPs�

Alexandros Stamatakis1, Michael Ott2, and Thomas Ludwig3

1 Institute of Computer Science, Foundation for Research and Technology-Hellas,
P.O. Box 1385, GR-71110 Heraklion, Crete, Greece

2 Technical University of Munich, Department of Computer Science,
Boltzmannstr. 3, D-85748 Garching b. München, Germany

3 Ruprecht-Karls University, Department of Computer Science,
Im Neuenheimer Feld 348, D-69120 Heidelberg, Germany

Abstract. Inference of phylogenetic trees comprising hundreds or even
thousands of organisms based on the Maximum Likelihood (ML) method
is computationally extremely intensive. In order to accelerate computa-
tions we implemented RAxML-OMP, an efficient OpenMP-parallelization
for Symmetric Multi-Processing machines (SMPs) based on the sequen-
tial program RAxML-V (Randomized Axelerated Maximum Likelihood).
RAxML-V is a program for inference of evolutionary trees based upon
the ML method and incorporates several advanced search algorithms
like fast hill-climbing and simulated annealing. We assess performance
of RAxML-OMP on the widely used Intel Xeon, Intel Itanium, and
AMD Opteron architectures. RAxML-OMP scales particularly well on
the AMD Opteron architecture and achieves even super-linear speedups
for large datasets (with a length ≥ 5.000 base pairs) due to improved
cache-efficiency and data locality. RAxML-OMP is freely available as
open source code.

1 Introduction

Phylogenetic (evolutionary) trees are used to represent the evolutionary history
of a set of n organisms which are often also called taxa within this context.
A multiple alignment of a—in a biological context—suitable small region of
their DNA or protein sequences can be used as input for the computation of
phylogenetic trees. Note, that a high-quality multiple alignment of the organisms
is a necessary prerequisite to conduct a phylogenetic analysis: The quality of the
evolutionary tree can only be as good as the quality of the multiple alignment!
Other computational approaches to phylogenetics also use gene order data [24].

In a computational context phylogenetic trees are usually strictly bifurcat-
ing (binary) unrooted trees. The organisms of the alignment are located at the
tips (leaves) of such a tree whereas the inner nodes represent extinct common
� This work is funded by a Postdoc-fellowship granted by the German Academic Ex-

change Service (DAAD) and by the ”Competence Network for Technical, Scientific
High Performance Computing in Bavaria (KONWIHR)”.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 288–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 289

45

40

35

30

25

20

15

10

Common Ancestor

H
um

an
s

M
on

ke
ys

C
hi

m
pa

nz
ee

s

Millions of

Years Ago Pr
os

em
ia

ns
N

ew
 W

or
ld

O
ra

ng
ut

an
s

G
or

illa
s

M
on

ke
ys

O
ld

 W
or

ld

G
ib

bo
ns

50

55

5

Fig. 1. Phylogenetic tree representing the evolutionary relationship between monkeys
and the homo sapiens

ancestors. The branches of the tree represent the time which was required for
the mutation of one species into another—new—one. An example for the evolu-
tionary tree of the monkeys and the homo sapiens is provided in Figure 1. Note,
that the tree need not be the model of evolution. Therefore, approaches using
phylogenetic networks are becoming more popular recently [8].

The inference of phylogenies with computational methods has many impor-
tant applications in medical and biological research, such as e.g. drug discovery
and conservation biology. A paper by D. Bader et al [1] addresses potential in-
dustrial applications of evolutionary tree inference and contains numerous useful
references to important biological results obtained via phylogenetic analysis.

Due to the rapid growth of available sequence data over the last years and
the constant improvement of multiple alignment methods it has now become
feasible to compute very large trees which comprise more than 1.000 organisms.
The computation of the tree-of-life containing representatives of all living beings
on earth is considered to be one of the grand challenges in Bioinformatics.

The most fundamental algorithmic problem computational phylogeny faces
consists in the immense amount of potential alternative tree topologies. This
number grows exponentially with the number of sequences n, e.g. for n = 50
organisms there already exist 2.84 ∗ 1076 alternative topologies; a number al-
most as large as the number of atoms in the universe (≈ 1080). Thus, given
some—biologically meaningful—optimality criterion for evaluating all alterna-
tive configurations (topologies) in order to search for the best tree, one can
quickly assume that the problem might be NP-hard. In fact, this has already
been demonstrated for the general version of the perfect phylogeny problem [3]
and maximum parsimony (MP) [4]. The maximum likelihood (ML) criterion [5]

290 A. Stamatakis, M. Ott, and T. Ludwig

is also believed to be NP-hard, though this could not be demonstrated so far
because of the significantly superior mathematical complexity of the model. Due
to the large amount of alternative trees, intelligent search space heuristics have
to be deployed for ML-based phylogenetic inference. Another important aspect
for the design of such heuristics consists in the very high degree of accuracy (dif-
ference to the score of the optimal or best-known solution) which is required to
obtain reasonable biological as well as topologically closely related results. While
an accuracy of 90% is considered to be a “good” value for heuristics designed
to solve other NP-hard optimization problems, e.g. the traveling salesman prob-
lem, recent results [29] suggest that phylogenetic analyses require an accuracy
≥ 99.99%, in particular for large trees. This observation yields the whole field
more difficult and challenging.

When comparing the various optimality criteria which have been devised for
phylogenetic trees one can observe a trade-off between speed and quality. This
means that a phylogenetic analysis conducted with an elaborate model such
as maximum likelihood requires significantly more computation time but yields
trees with superior accuracy than e.g. neighbor joining [6] (NJ) or MP [7] [28].
However, due to the higher accuracy it is desirable to infer large and complex
trees with maximum likelihood or closely related Bayesian methods.

Within this context it is important to note that the design of maximum like-
lihood programs is primarily an algorithmic discipline, due to the gigantesque
number of alternative tree topologies and the high computational cost of the
likelihood function. Thus, progress in the field has mainly been attained via algo-
rithmic improvements rather than by brute force allocation of all available com-
putational resources. As an example consider the performance of parallel fastD-
NAml [21] (state-of-the-art parallel ML program in 2001) and RAxML-V [19]
(Randomized Axelerated Maximum Likelihood, one of the fastest sequential ML
programs in 2004) on a 1.000-organism alignment: For this large alignment par-
allel fastDNAml consumed approximately 9.000 accumulated CPU hours on a
Linux PC cluster in contrast to less than 20 hours required by RAxML-V on a
single Intel Xeon processor. In addition, the likelihood of the tree computed by
RAxML-V was significantly better than the likelihood score obtained by parallel
fastDNAml.

However, as algorithmic research in phylogenetics comes of age and novel
powerful algorithms allow for computation of trees which comprise more than
500 sequences, a new category of problems arises. Those problems mainly concern
memory shortage, cache efficiency, and a still very large demand for computation
time. Thus, the main focus of this paper is on the deployment of the shared
memory programming paradigm for the computation of large trees (containing
≥ 500 sequences) based on statistic models of sequence evolution.

The remainder of this paper is organized as follows: Section 2 describes re-
lated work in the area of ML phylogeny programs. The following Section 3 briefly
describes the main components of the sequential version of RAxML-V. In Sec-
tion 4 the computation of the likelihood score for a tree is explained and the
OpenMP [14] parallelization of RAxML-V is outlined. In Section 5 we report

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 291

RAxML-OMP speedups on Xeon, Itanium, and Opteron SMPs. Finally, Sec-
tion 6 provides a conclusion and briefly addresses current and future issues of
work.

2 Related Work

The survey of related work is restrained to statistical phylogeny methods since
they have shown to be the most accurate methods currently available. On the
one hand there exist “traditional” maximum likelihood methods and a large
variety of programs implementing maximum likelihood searches. The recently
updated site maintained by J. Felsenstein [17] lists most available programs. On
the other hand there exist Bayesian methods which are relatively new compared
to maximum likelihood and have experienced great impact, especially through
the release of a program called MrBayes [9].

A thorough comparison of popular phylogeny programs using statistical ap-
proaches such as fastDNAml [13], MrBayes, PAUP [15], and TREE-PUZZLE [22]
on small simulated datasets (up to 60 sequences) has been conducted by T.L.
Williams et al [28]. The most important result of this paper is that MrBayes
outperforms all other phylogeny programs in terms of speed and tree quality.
However, the results of this survey do not necessarily apply to large real data
sets since simulated alignment data has different properties and a significantly
stronger phylogenetic signal than real world data (see [20] for a discussion),
i.e. typically much more computational effort is required to find a “good” phy-
logenetic tree for real-world data. Due to these significant differences between
real and simulated datasets comparative surveys should include collections of
simulated and real datasets in order to yield a more complete image of program
performance. In fact, there exist some real datasets for which MrBayes fails to
converge to acceptable likelihood values within reasonable time [19]. Huelsen-
beck et al [10] provide an in-depth discussion of potential pitfalls of Bayesian
inference.

More recently, Guidon and Gascuel published an interesting paper about
their new program PHYML [7], which is very fast and seems to be able to
compete with MrBayes. PHYML is a “traditional” maximum likelihood hill-
climbing program which seeks to find the optimal tree in respect to the likelihood
value. Moreover, the respective performance analysis includes larger simulated
datasets of 100 sequences and two well-studied real data sets containing 218
and 500 sequences. Their experiments show that PHYML is extremely fast on
real and simulated data. However, the accuracy on real data needs improve-
ment [19]. Moreover, the results show that well-established sequential programs
like PAUP* [15], TREE-PUZZLE [22], and fastDNAml [13] are prohibitively slow
on datasets containing more than 200 sequences, at least in sequential execution
mode.

Vinh et al [27] recently published a program called IQPNNI which yields
better trees than PHYML on real world data but is significantly slower.

292 A. Stamatakis, M. Ott, and T. Ludwig

Finally, the current hill-climbing and simulated annealing algorithms imple-
mented in RAxML-V clearly outperform PHYML and IQPNNI on real world
data, both in terms of execution time and final tree quality [20].

The main problem which parallel implementations of ML analyses face is that
technical development drags behind algorithmic development. This means that
programs are parallelized that do not represent the state-of-the-art algorithms
any more. Thus, it can be observed that parallel or distributed codes like parallel
fastDNAml [21], DPRml [12] (both based on a search algorithm from 1994) or
parallel TREE-PUZZLE [18] are just as good as the currently best sequential
codes in terms of tree quality. However, they require significantly more CPU
hours to attain the same results. The above programs have all been parallelized
with MPI.

To the best of our knowledge, apart from RAxML-OMP, there exists only one
distributed shared-memory implementation of an ML program for NUMA archi-
tectures: veryfastDNAml [26] which is based on the TreadMarks library [25]. The
veryfastDNAml implementation is also based on the old and slow fastDNAml al-
gorithm from 1994. The technical details of the veryfastDNAml implementation
have not been published anywhere such that it is not known if the parallelization
is based on loop-level parallelism or a coarse-grained master-worker scheme.

3 RAxML-V

In this Section we provide a brief outline of the basic components and algorithms
of RAxML-V, which are required to understand the structure of the paralleliza-
tion. The program initially computes a starting tree which contains all sequences
of the alignment using a fast greedy MP search. The MP search is performed by
an appropriately modified version of Joe Felsenstein’s dnapars program [17]. One
important property of dnapars is that it yields distinct starting trees depending
on the input order permutation of the sequences. By randomizing the sequence
input order, the program can start the optimization from different points of
search space each time it is executed. Therefore, by executing several RAxML-V
runs it is more likely to find good trees and avoid local maxima since each run
will yield a distinct final tree. Thus, the confidence into the final results obtained
by RAxML-V is higher than for strictly deterministic programs.

The procedure by which the parsimony score is computed in dnapars is very
similar to ML. Thus, the loop-level parallelization of the parsimony component
is analogous to that for ML which we describe in more detail in the following
Section 4.

After the computation of the parsimony starting tree, the likelihood of the
candidate topology is improved by subsequent application of topological alter-
ations. To evaluate and select candidate alternative topologies RAxML-V uses
a mechanism called lazy subtree rearrangements [19]. This mechanism initially
performs a rapid pre-scoring of a comparatively large number of alternative
topologies. After the pre-scoring step a few of the best pre-scored topologies are
analyzed more thoroughly. The fact, that RAxML-V is currently the fastest and

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 293

select
algorithm

randomize
permutation

dnapars

simulated
annealing

hill−
climbing

OpenMP
parallelization

component
ML core

starting tree

input: alignment file

output: tree file

iterateiterate

Fig. 2. Basic components of RAxML-V

most accurate program on real alignment data is due to this ability to quickly
evaluate (pre-score) a large number of alternative tree topologies. Furthermore,
RAxML-V currently implements two basic search procedures which exploit the
lazy subtree rearrangement mechanism:

1. A strict hill-climbing procedure which applies lazy subtree rearrangements
until the candidate tree can not be improved upon any more [19].

2. A simulated annealing algorithm which is slightly slower than hill-climbing
on the one hand but able to escape local maxima on the other hand [20].

Finally, it is important to know that both search algorithms use the same core
component to calculate maximum likelihood values, such that the parallelization
applies to both search strategies. Figure 2 provides an overview of RAxML-V as
described in this Section.

4 Parallelization

The current Section does not intend to provide a detailed introduction to ML
for phylogenetic trees. The goal is to give a notion of the complexity and amount
of arithmetic operations required to compute the maximum likelihood score for
one single tree topology. Furthermore, it aims to explain where the intrinsic
loop-level parallelism occurs and how it can be exploited.

The seminal paper by Felsenstein [5] which actually introduces the applica-
tion of ML to phylogenetic trees and the comprehensive and readable chapter by
Swofford et al. [23] provide detailed descriptions of the mathematical background
and models of nucleotide substitution (see below).

294 A. Stamatakis, M. Ott, and T. Ludwig

Seq 1
Seq 3 Seq 4

virtual root vr virtual root vr

Seq 1 Seq 2Seq 2
Seq 3 Seq 4Seq 4

Seq 2Seq 1

Seq 3

place arbitrary virtual rootunrooted 4−taxon tree compute likelihood vectors bottom−up

Fig. 3. Computation of the likelihood vectors of a 4-taxon tree

To calculate the likelihood of a tree topology with given branch lengths one
requires a probabilistic model of nucleotide substitution Pij(t) which allows for
computing the probability P that a nucleotide i (e.g. A) mutates to another
nucleotide j (e.g. G) within time t (branch length).

Given the model of nucleotide substitution and an unrooted tree topology
with fixed branch lengths where the data (the individual sequences of the mul-
tiple alignment) is located at the tips, one can proceed with the computation of
the likelihood score for that tree. In order to compute the likelihood a virtual
root (vr) has to be placed into an arbitrary branch of the unrooted tree in order
to calculate/update the individual entries of each likelihood vector with length
n (alignment length) in the tree bottom-up, i.e. starting at the tips and moving
towards vr. It is important to note, that the likelihood of the tree is identic irre-
spectively of where vr is placed. After having updated all likelihood vectors the
vectors to the right and left of vr can be used to compute the overall likelihood
value of the tree. The process of rooting and updating the likelihood vectors for
a 4-taxon tree is outlined in Figure 3.

To understand how the individual likelihood vectors are updated consider a
subtree rooted at node p with immediate descendants r and q and likelihood
vectors l_p, l_q, and l_r respectively. When the likelihood vectors l_q and
l_r have been computed the entries of l_p can be calculated—in an extremely
simplified manner—as outlined by the pseudo-code below and in Figure 4:

for(i = 0; i < n; i++)
l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr));

where f() is a simple function, i.e. requires just a few FLOPs, to combine the
values of g(l_q[i], b_pq) and g(l_r[i], b_pr). The g() function however
is more complex and computationally intensive since it contains the evaluation
of Pij(t). The parameter t corresponds to the branch lengths b_pq and b_pr
respectively. Since entries l_p[i] and l_p[i + 1] can be computed indepen-
dently this for-loop can be parallelized by insertion of an appropriate OpenMP
directive to exploit the inherent loop-level parallelism:

#pragma omp parallel for private(...)
for(i = 0; i < n; i++)

l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr));

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 295

p

q r

l_p

towards vr

l_q l_r
b_prb_pq

g(l_q[i], b_pq)

g(l_r[i], b_pr)

l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr))

Fig. 4. Updating the likelihood vector of node p at position i

Up to this point it has been described how to compute the likelihood of a tree
given some arbitrary branch lengths. However, in order to obtain the maximum
likelihood value for a given tree topology the length of all branches in the tree has
to be optimized. Since the likelihood of the tree is not altered by distinct rootings
of the tree the virtual root can be subsequently placed into all branches of the
tree. Each branch can then be optimized individually to improve the likelihood
value of the entire tree. In general—depending on the implementation—this
process is continued until no further branch length alteration yields an improved
likelihood score. Branch length optimization can be regarded as maximization of
a one-parameter function lh(t) where lh is the phylogenetic likelihood function
and t the current branch length at vr.

Typically, the three basic operations: computation of the likelihood vectors,
optimization of the branch lengths, and computation of the overall likelihood
value require ≈ 90% of the complete execution time of every ML implemen-
tation. For example 92.72% of total execution time for a typical dataset with
150 sequences in PHYML and 92.89% for the same dataset in RAxML-V. Thus,
an acceleration of these functions on a technical level by optimization of the C
code, the memory access behavior and consumption, as well as the exploitation
of loop-level parallelism can lead to substantial performance improvements. The
structure of the loops in the three basic functions is very similar to the abstract
pseudocode representation provided above. The main for-loops of RAxML have
been parallelized in an analogous way.

Memory consumption is becoming a problem for inference of large phy-
logenetic trees containing more than 1.000 sequences. Table 1 provides some
figures for memory requirements of RAxML, PHYML, and MrBayes for large
datasets. Note that MrBayes could not handle the 10.000-taxon dataset, even
when compiled on a 64-bit architecture. In fact only the sequential RAxML-
version could still be executed on a 32-bit processor with this large dataset. The
memory requirements of RAxML-V are directly proportional to the alignment
size, i.e. Θ(n∗m) where n is the number of sequences and m the number of base
pairs (length of the alignment). Figure 5 depicts how the memory allocated by
RAxML-OMP is accessed by 2 individual threads, each running on a separate
CPU. The situation is particularly favorable because memory accesses are inde-

296 A. Stamatakis, M. Ott, and T. Ludwig

Alignment Size= Memory Requirements

number of
sequences: n

alignment length: m

Cache0 Cache1

CPU0 CPU1
Thread0 Thread1

working
space of
thread 0

working
space of
thread 1

= data matrix =O(n *m)

Fig. 5. Memory access scheme of RAxML-OMP

Table 1. Memory consumption of RAxML-III, MrBayes, and PHYML for large data
sets

Program 1.000 taxa 10.000 taxa

RAxML-III 200 MB 750 MB
PHYML 900 MB 8.8 GB
MrBayes 1.2 GB not available

pendent and equally distributed among threads, i.e. thread 0 in the figure works
exclusively on the left half of the data matrix and thread 1 on the right half.

Thus, we believe that RAxML-OMP provides a viable approach to resolve
both memory shortage problems and allow for higher cache efficiency at the
same time. It is important to emphasize that memory efficiency is becoming
an important issue because evolutionary biology has already entered the whole-
genome era. This means that alignments used for phylogenetic analyses will
particularly grow in length m which will have typical values of around 10.000
or 20.000 base pairs and do not fit into cache any more. Moreover, inferences
of large trees containing more than 1.000 sequences which are now becoming
algorithmically feasible also require long alignments in terms of m to produce a
reliable phylogenetic signal [2]. Finally, RAxML-OMP can serve as a basis for
hybrid MPI/OpenMP implementations on constellations of PC-clusters which
are widely available nowadays.

5 Results

Initially, we provide a brief description of the test platforms and datasets used
in this study. Thereafter, we provide measured speedup values for various plat-

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 297

form/dataset combinations and compare the performance on the different SMP
architectures.

Test data, platforms and experimental setup: For measuring the efficiency of
RAxML-OMP we executed the program on three common SMP architectures:
a dual-processor Intel Xeon 2.4GHz with 4 Gbyte of main memory, a quad-
processor Intel Itanium2 1.3GHz with 8 Gbyte of main memory, and a quad-
processor AMD Opteron 850 2.4 GHz with 8 Gbyte of memory. We used several
real world alignment data sets containing 150, 218, 500, and 1.000 taxa (150 SC,
218 RDPII, 500 ARB, 1000 ARB). In addition we generated 3 simulated align-
ment data sets with 300 sequences (sim300 1000, sim300 5000, sim300 10000) to
evaluate the effect of increasing alignment length on program performance. For
the sake of completeness we indicate the alignment lengths (# of base pairs) of
all datasets we used in Table 2.

Table 2. Alignment lengths

Dataset # bp Dataset # bp

150 SC 1.130 sim300 1000 1.000
218 RDPII 1.847 sim300 5000 5.000
500 ARB 2.751 sim300 10000 10.000
1000 ARB 3.364

We compiled RAxML-OMP with the native Intel compiler icc -O3 and
the respective OpenMP flags for the Itanium and Xeon architectures. For the
Opteron we used the PGI [16] compiler pgcc -O3. In order to measure execu-
tion times and calculate speedup values we executed RAxML-OMP with 1 and
2 threads on the Xeon, and 1,2, and 4 threads on the Itanium and Opteron pro-
cessors respectively. We executed 3 runs for each dataset/architecture/number-
of-threads combination and report average values. To be able to reproduce com-
parable results we used a fixed parsimony starting tree. This was achieved by
using a standard input sequence permutation order instead of a randomized one.
Moreover, we also measured the execution times of the parsimony and maximum
likelihood components separately to analyze the efficiency for each part. A sepa-
rate analysis is of particular interest since the parsimony component exclusively
performs integer operations while maximum likelihood performs mainly a large
number of floating point operations. Moreover, ML requires approximately 5
times higher per-loop execution times than MP, e.g. for the 150 SC dataset 18.3
μs for one complete iteration of a parsimony for-loop and 97.2 μs for an ML
for-loop1

Experimental results: A complete analytical table containing the execution times
of all experiments conducted within the framework of this study is available

1 These times have been measured on an Intel Centrino.

298 A. Stamatakis, M. Ott, and T. Ludwig

of processors

sp
ee

du
p

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 4

Opteron
Xeon

Itanium

Fig. 6. Speedup on Xeon, Opteron, and Itanium for 218 RDPII

at: wwwbode.in.tum.de/˜ottmi/results jan 05.html. Therefore, we present some
representative examples of RAxML-OMP performance.

Figure 6 indicates the speedup values for the relatively small—in terms of
alignment length m (see Table 2 and Figure 5)—dataset 218 RDPII on Xeon,

sp
ee

du
p

of processors

1

2

3

4

5

6

1 2 4

Opteron
Xeon

Itanium

Fig. 7. Speedup on Xeon, Opteron, and Itanium for sim300 10000

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 299

sp
ee

du
p

of basepairs

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2xOpteron
4xOpteron

2xXeon
2xItanium
4xItanium

Fig. 8. Speedup over alignment length (number of base pairs) per processor type and
number of CPUs

Opteron, and Itanium architectures. The generally better scalability of the Opteron
processor is most probably due to the HTT (Hyper Transport Technology [11])
memory access architecture which suits the program structure of RAxML-OMP.
However, this issue requires further investigation. On the other hand, due to
an unfavorable memory access design the Xeon processor yields only marginal
speedups.

Figure 7 provides the speedup values for the sim300 10000 dataset. Though,
comparable in size in respect to the number of taxa with 218 RDPII, the length
of this alignment and consequently the length of the parallelized for-loops is sig-
nificantly longer: 10.000 nucleotides = 10.000 iterations (also called base pairs).
Note, that the speedup on the AMD Opteron on 2 and 4 CPUs is clearly super-
linear (≈ 2.8 and ≈ 5.6 respectively). This is due to the improved cache efficiency
and data locality inherent to RAxML-OMP in conjunction with AMD’s HTT
and a “long” alignment. In order to demonstrate the impact of alignment length
on speedup values in Figure 8 we plot the speedup over the number of base
pairs—for all datasets used in this study—per processor type and number of
CPUs. The general tendency is that the parallel efficiency increases with align-
ment length due to the aforementioned reasons on the Opteron. Note, that for
an AMD Opteron equipped with significantly less main memory (512MB) and
a smaller cache the speedups became already super-linear at significantly lower
alignment lengths (≥ 2.000 base pairs). Another point worth mentioning is that
a “large” number of taxa n (see Figure 5) in the alignment has a negative effect
on speedup-values since the amount of allocated memory increases significantly.
This explains the buckling which can be observed at ≈ 3.500 base pairs. This
value corresponds to the large—in terms of taxa—1000 ARB dataset. In Fig-

300 A. Stamatakis, M. Ott, and T. Ludwig

Opteron
Xeon
Itanium

1 CPU 2 CPU 4 CPU

to
ta

l r
un

tim
e

[s
]

0

50000

100000

150000

200000

250000

300000

350000

Fig. 9. Accumulated average execution times over all datasets per processor type and
number of CPUs

ure 9 we present the accumulated average runtime over all datasets per number
of CPUs for the Itanium, Opteron, and Xeon architectures. In all cases RAxML-
OMP is at least ≈ 50% faster on Opteron than on the Xeon and Itanium.

Finally, as expected the parallel efficiency of the ML component was signif-
icantly better than for MP due to the aforementioned reasons (please refer to
the results web-site for exact figures).

6 Conclusion, Availability and Future Work

We have presented an efficient OpenMP parallelization of RAxML-V which scales
particularly well on the AMD Opteron SMP architecture. Due to improved cache
efficiency and data locality RAxML-OMP yields clearly superlinear speedups for
long (in terms of base pairs) datasets on 2-way and 4-way Opteron nodes. More-
over, the current implementation allows for inference of large 1.000-taxon trees
on a single Opteron node in less than 6 hours. The program is freely available for
download as open source code at www.ics.forth.gr/˜stamatak. Currently, we are
working on an OpenMP-version of PHYML which faces more serious memory
problems than RAxML.

Since scalability of parallel programs which exploit fine-grained loop-level
parallelism is limited, future work will mainly cover the implementation of a
mixed MPI/OpenMP parallelization of RAxML for hybrid supercomputer archi-
tectures. Moreover, the architectural causes for the relatively bad performance
of RAxML-OMP on both Intel architectures in comparison to the efficiency on
the Opteron need to be further investigated.

RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs 301

References

1. Bader, D.A., Moret, B.M.E., Vawter, L.: Industrial Applications of High-
Performance Computing for Phylogeny Reconstruction. Proceedings of SPIE IT-
Com: Commercial Applications for High-Performance Computing 4528 (2001)
159–168

2. Bininda-Emonds, O.R.P., Brady, S.G., Sanderson, M.J., Kim, J.: Scaling of accu-
racy in extremely large phylogenetic trees. Proceedings of Pacific Symposium on
Biocomputing (2000) 547–558

3. Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, T., Warnow, T.: The
hardness of perfect phylogeny, feasible register assignment and other problems on
thin colored graphs. Theor. Comp. Sci. 244 (2000) 167–188

4. Day, W.E., Johnson, D.S., Sankoff, D.: The computational Complexity of inferring
rooted phylogenies by parsimony. Math. Bios. 81 (1986) 33–42

5. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood
Approach. J. Mol. Evol. 17 (1981) 368–376

6. Gascuel, O.: BIONJ: An improved version of the NJ algorithm based on a simple
model of sequence data. Mol. Biol. Evol. 14 (1997) 685–695

7. Guindon, S., Gascuel, O.: A Simple, Fast, and Accurate Algorithm to Estimate
Large Phylogenies by Maximum Likelihood. Syst. Biol. 52(5) (2003) 696–704

8. Gusfield, D., Eddhu, S., Langley, C.: Efficient Reconstruction of Phylogenetic Net-
works with Constrained Recombination. Proceedings of 2nd IEEE Computer So-
ciety Bioinformatics Conference (2003) 363–371

9. Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian Inference and
its Impact on Evolutionary Biology. Science 294 (2001) 2310–2314

10. Huelsenbeck, J.P., Larget, B., Miller, R.E., Ronquist, F.: Potential Applications
and Pitfalls of Bayesian Inference of Phylogeny. Syst. Biol. 51(5) (2002) 673–688

11. Hyper Transport Technology: www.hypertransport.org.
12. Keane, T.M., Naughton, T.J., Travers, S.A.A., McInerney, J.O., McCormack, G.P.:

DPRml: Distributed Phylogeny Reconstruction by Maximum Likelihood. Bioinfor-
matics 21(7) (2005) 969–974

13. Olsen, G., Matsuda, H., Hagstrom, R., Overbeek, R.: fastdnaml: A Tool for Con-
struction of Phylogenetic Trees of DNA Sequences using Maximum Likelihood.
Comput. Appl. Biosci.10 (1994) 41–48

14. OpenMP: www.openmp.org/drupal.
15. PAUP project site: paup.csit.fsu.edu.
16. Portland Group High-Performance Compilers and Tools: www.pgroup.com.
17. PHYLIP downlaod site and list of phylogeny software:

evolution.genetics.washington.edu.
18. Schmidt, H.A., Strimmer, K., Vingron, M., Haeseler, A.v.: TREE-PUZZLE: maxi-

mum likelihood phylogenetic analysis using quartets and parallel computing. Bioin-
formatics 18 (2002) 502–504

19. Stamatakis, A., Ludwig, T., Meier, H.: RAxML-III: A Fast Program for Maxi-
mum Likelihood-based Inference of Large Phylogenetic Trees. Bioinformatics 21(4)
(2005) 456–463

20. Stamatakis, A.: An Efficient Program for phylogenetic Inference Using Simulated
Annealing. Proceedings of 19th International Parallel and Distributed Processing
Symposium (2005) to be published

21. Stewart, C., Hart, D., Berry, D., Olsen, G., Wernert, E., Fischer, W.: Parallel Im-
plementation and Performance of fastdnaml - a Program for Maximum Likelihood
Phylogenetic Inference. Proceedings of SC2001 (2001)

302 A. Stamatakis, M. Ott, and T. Ludwig

22. Strimmer, K., Haeseler, A.v.: Quartet Puzzling: A Maximum-Likelihood Method
for Reconstructing Tree Topologies. Mol. Biol. Evol. 13 (1996) 964–969

23. Swofford, D.L., Olsen, G.J., Wadell, P.J., Hillis, D.M.: Phylogenetic Inference.
Hillis, D.M., Moritz, C., Mabel, B.K., (editors) Molecular Systematics, Chapter
11 (1996) Sinauer Associates, Sunderland, MA

24. Tang, J., Moret, B.M.E., Cui, L., dePamphilis, C.W.: Phylogenetic reconstruc-
tion from arbitrary gene-order data. Proc. 4th IEEE Conf. on Bioinformatics and
Bioengineering BIBE’04 (2004) 592–599

25. The TreadMarks Distributed Shared Memory (DSM) System:
www.cs.rice.edu/˜willy/TreadMarks/overview.html

26. VeryFastDNAml: www-bioweb.pasteur.fr/seqanal/soft-
pasteur.html#veryfastdnaml

27. Vinh L.S., Haeseler, A.v.: IQPNNI: Moving fast through tree space and stopping
in time. Mol. Biol. Evol. 21(8) (2004) 1565–1571

28. Williams, T.L., Moret, B.M.E.: An Investigation of Phylogenetic Likelihood Meth-
ods. Proceedings of 3rd IEEE Symposium on Bioinformatics and Bioengineering
(2003)

29. Williams, T.L., Berger-Wolf, B.M., Roshan, U., Warnow, T.: The relationship be-
tween maximum parsimony scores and phylogenetic tree topologies. Tech. Report,
TR-CS-2004-04 (2004) Department of Computer Science, The University of New
Mexico

 V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 303 – 312, 2005.
© Springer-Verlag Berlin Heidelberg 2005

OpenTS: An Outline of
Dynamic Parallelization Approach

Sergey Abramov1, Alexei Adamovich1, Alexander Inyukhin2, Alexander Moskovsky1,
Vladimir Roganov1, Elena Shevchuk1, Yuri Shevchuk1, and Alexander Vodomerov2

1 Program System Institute, Russian Academy of Sciences, Pereslavl-Zalessky, 152020,
Russia, Yaroslavl Region.
+7 08535 98 064 (phone&fax)

abram@botik.ru
2 Moscow, 119192, Michurinsky prosp., 1, Institute of Mechanics of MSU, Russia

Abstract. The paper is dedicated to an open T-system (OpenTS) — a
programming system that supports automatic parallelization of computations
for high-performance and distributed applications. In this paper, we describe the
system architecture and input programming language as well as system’s
distinctive features. The paper focuses on the achievements of the last two years
of development, including support of distributed, meta-cluster computations.

1 Open T-System Outline

Open T-System (Open TS) is a recent dynamic program parallelization technology for
high-performance and distributed applications. It originates from functional and meta-
programming technologies [1, 2] and tries to achieve maximum performance of
single/multi-processors, supercomputers, clusters and meta-clusters. Another goal was
the development of easy-to-use tools for parallel programming, with high learning
curve and easy legacy code support. With initial implementations of T-system dated
back to nineties and end of eighties of the last century, Open TS is a third generation
of the T-system [3]. The Open TS approach allows addressing in a uniform way
parallel computing problem for mutli-core processors, SMP systems, computational
clusters and distributed systems. As well, Open TS facilitates parallel applications
with non-uniform parallelism grains or parallelism grains defined at runtime.

1.1 Related Work

The Open TS design utilizes many concepts of parallel computing. First of all, it
devises high-level parallelizing approach, while many of them currently exist [4].
Secondly it utilizes an extension of C++ language to express parallelism, while many
other extensions of C and C++ for parallel computing were developed [5]. Thirdly,
the concept of T-system is based upon functional programming approach [1], that
make it very similar to parallel implementations of functional languages [6]. At last,
Open TS runtime implementation utilizes Distributed Shared Memory (DSM) [7],
mutli-tier architecture [8] and C++ template- based design [9]. Here we note
separately only small fraction of all works in this field, not comprehensive but
representative, as we hope:

304 S. Abramov et al.

1. Charm++ [10] is a C++ extension for parallel computing, which is used to
create high-performance codes for supercomputers [11]. Open TS is different
in many aspects – from runtime implementation to language semantics. The
most important is that Open TS uses functional approach for parallelization,
while Charm++ uses asynchronous communication with object-oriented
model.

2. mpC++ is another example of successful implementation of “parallel C” for
computational clusters and heterogeneous clusters [12]. While mpC uses
explicit language constructions to express parallelism, Open TS has implicit
parallelization constructs.

3. Cilk is a language for multithreaded parallel programming based on ANSI C
[13]. Cilk is designed for shared memory computers only, in contrary Open
TS can be run on computational clusters and meta-clusters.

4. Glasgow Parallel Haskell is a well-known extension of Haskell programming
language [14]. Open TS is similar with GPH by utilizing some implicit
approach to parallelizing computation, while enabling low-level optimization
on C++ level, unavailable in Haskell.

5. OMPC++[15] is very similar to Open TS in many aspects, especially in the
way of using C++ templates in runtime. However, language extensions are of
primary importance for Open TS concept.

While many parallel programming techniques, like Unified Parallel C [16] and CxC
[17] are not covered in our comparison, Open TS distinctions will be virtually the
same.

1.2 Programming Model

Unlike many tools for parallel programming, T-System does not try to change the
usual programming model too much. Native input language is a transparent attribute-
based extension of C++; however, other T-dialects of programming languages are in
the development stage: T-FORTRAN, T-REFAL. Only two new notions are really
important for programming: T-function and T-value. T-values are extensions of basic
C values with non-ready value, read access to a non-ready value stops execution of a
T-function, unless C-value is provided during computation. T-functions are pure C-
functions forming functional model at the top level of program structure. However,
imperative C exists inside T-functions enabling potential for low-level optimization.
Support for object oriented-model is forthcoming.

An important feature of Open TS is a separation of the computation code from the
scheduling code. In Open TS, the programmer is enabled to develop complex
strategies for dynamic parallelization without affecting the computational code itself.

1.3 Execution Model

Parallel execution is based on a completely conflict-free data-flow model, and the
“macro-scheduling” algorithm distributes computational tasks (active T-functions)
over all available computing resources on the fly. Thus, latency hiding should enable
very high computational power utilization. Moreover, heterogeneous (e.g. different
CPU speeds) computational clusters can be efficiently loaded with that approach.

 OpenTS: An Outline of Dynamic Parallelization Approach 305

Special hardware such as application-specific accelerators and processors can be also
considered as specific computational resources, it is dynamically loaded in the same
way.

Millions of threads1 can work in a cooperative and conflict-free way enabling
latency hiding: any time non-ready T-value is reached, T-System switches rapidly to
another ready-to-compute task. In this way, T-System avoids blocking computation in
many cases when communication infrastructure permits. In brief, T-System may be a
good candidate to fill up the gap between fast recent CPUs and latency-restricted
communications.

1.4 T-Applications

T-application is a self-contained, dynamically linked executable. In a nutshell, it
recognizes the execution environment and automatically loads a corresponding
communication driver on the fly. The execution environment may be one of the
following.
• Unicomputer – runs as a single process
• SMP — runs on a machine with symmetric multi processing capabilities
• MPI (6 flavors are supported now, including PACX MPI and MPICH-G2 for the

meta-cluster environment)
• PVM.

Thus, T-applications don't need to be recompiled or re-linked for all possible
communication flavors. This is important in many cases, especially in meta-clusters
with heterogeneous MPI implementations.

2 Open T-System Design Notes

Open T-System runtime has a microkernel-based design. Microkernel, or T-
Superstructure, is a central part of the runtime. It contains all essential entities that a
typical program needs to be run on. T-Superstructure has a “snowman” architecture of
three tiers: `S' (“super-memory” and “super-threads”), `M' (mobile objects and
references) and `T' (T-values, variables, references, functions). Being compact in size
(less than 5 000 lines in about 100 C++ classes), it suits for various extensions:
enhanced task schedulers, memory allocation schemes, custom thread systems, and so
on. A special class 'Feature' is used to register extension plug-ins, which are typically
dynamically linked at the startup stage. The microkernel can be easily ported to
`almost pure' hardware, because it is almost self-contained. C++ [cross] compiler only
is required for such porting. However, since C++ templates are used extensively, a
modern C++ compiler is required.

Fast context switch is a special feature of Open TS, which is very important for
efficient T-applications. Since T-applications are known to create millions of
simultaneous threads, fast switching is key important. Today, the T-context switch is
10 times faster than the fastest standard thread library switch.

1 Opens supports the usage of more than one million of threads even in one usual processor —

this was shown practically, this was used in real applications.

306 S. Abramov et al.

A “Supermemory”, or special kind of distributed shared memory, is located outside
of program data and used to manage T-values. Novel communication technologies
such as hyper-transport can be directly incorporated into the “Supermemory” layer to
avoid an unnecessary MPI overhead. Super memory is utilized in six different ways:

1. T-Values
2. Task exchange
3. Resource information exchange
4. Memorization table
5. “Heartbeat” (see below)
6. Shutdown signal

The fault-tolerance support has been implemented with the help of LAM MPI
BLCR checkpoint system [18]. It is integrated with the T-System runtime, thus
making fault-tolerant computing easier.

Since the T-system originates from the functional programming model, it is
possible to implement the fault-tolerance on the base of re-computing of T-functions.
This work is forthcoming.

3 Compilation of T-Programs

Two approaches are followed to develop compilers for T++ programs.
The first, “converter”, approach utilizes OpenC++ [19] parser to translate a T++

program to a C++ program using Open TS runtime library calls. Advantage of that
approach is that the best-of-breed C++ compiler can be used, with the best processor-
specific optimization available. The drawback is some C++ syntax features that are
not supported seamlessly due to Open C++ limitations.

An alternate, “compiler”, approach is based on an open-source GNU C++
compiler. An extra front-end language for T++ has been implemented, it has a smooth
and comprehensive support of all C++ language features. However, if the GNU C

 OpenTS: An Outline of Dynamic Parallelization Approach 307

compiler optimization is not on a par with the other compilers of the target platform, a
performance loss might happen.

4 T-Application Development Stages

First of all, T++ is a transparent attribute-based dialect of C++. The T++ code can be
trivially mapped to the sequential C++ program by masking T-attributes on the
preprocessor stage. To start, the T++ code may be developed and debugged without
T-System.

Then, the `t++' compiler may be used to obtain T-executables which should be able
to normally run on the unicomputer. Thus, the second stage of the development
process is to check whether everything works correctly on the unicomputer — this
involves usual testing and debugging for the traditional (one-processor) case.

Furthermore, the same executable may be run on the `cluster emulation'. The
simplest way to do this is to use LAM on various Linux systems: the command

mpirun n0,0,0,0 <t-executable>

will emulate the 4-node cluster. Some tuning can be done at this stage.
Finally, run T-executable on the desired target platform.

5 T-Application Debugging and Tuning

T-System has a number of built-in profiling, tracing and debugging facilities.
First of all, debugging is facilitated by several modes of compilation: “optimized”,

“normal” and “debug”. The “optimized” mode uses the runtime version with heavy
optimization. The runtime of the “normal” mode is simplified as compared to the
“optimized” version. If an application is compiled in the “normal” mode and a
problem persists, it should be attributed to the application itself — not the runtime —
with high degree of confidence. Moreover, the “debug” mode generates a large
amount of debug output, which helps programmers to understand the current situation
in T-runtime and applications. This output can be filtered with the help of regular
expressions.

A full-fledged Trace facility has also been implemented for T-applications.
When the program is finished, some statistical data is printed (see figures below).

It includes minimal/medium/maximal (depending on computational nodes) values of
the following parameters: used CPU time, communication time, idle time. This hot
profiling information may be very useful for the tuning of applications.

Communication message logs can be called in order to understand which
communication traffic occurred during the program execution. A T-function call
graph can also be obtained.

If the program crashes, some information (including program call stack with source
line numbers) is printed. Optionally, the debugger is started at the same time, which
may be very convenient for a rapid problem discovery.

Finally, a special heartbeat logic is used to discover broken
program/communication state. If heartbeat timeout is reached without any data
exchange, then all T-processes will exit automatically.

308 S. Abramov et al.

6 Sample Program Run

The example program is the calculation the Fibonacci number. Since it is not very
hard computationally, it is a good test for the runtime system, and it illustrates well
the simplicity of T++ programming.

tfun int fib(int n)
{
 if (n<2) return 1;
 return (fib(n-1)+fib(n-2));
}
tfun int main (int argc, char *argv[])
{
 int n = atoi(argv[1]);
 printf(“Fibonacci %d is %d\n”,n,(int)fib(n));
 return 0;

}

The only T-function is the “fib” function which recursively calls itself. Since the
result of “fib” is a non-ready value, explicit casting to int is necessary for the program
to run correctly. The casting results in the “main” thread wait until the result of “fib”
is ready. “fib” recursively calls itself creating a tree, while the tree branches can be
computed in parallel.

Compiling the program is possible with either t++ or tg++.

t+ -o fib0 fib0.tcc

The process of the program execution is illustrated in Fig. 1 (running on single
processor) and Fig. 2 (running on four-cluster nodes). You may see some speedup
demonstrated by “fib”. The example has been a mere illustration that doesn’t reflect
the real quality of T-system, benchmarking results will be published elsewhere.

Fig. 1. Sample program run result in console

 OpenTS: An Outline of Dynamic Parallelization Approach 309

Fig. 2. Sample program run on multiple cluster nodes

7 T++ Language in a Nutshell

The T++ language is a semantically and syntactically “seamless” extension of C++.
The language constructions are enumerated below with short descriptions following
them:

tfun — a function attribute which should be placed just before the function
declaration. Now, the function cannot represent a class method but must be an
ordinary C function. A function with the “tfun” attribute is named “T-function”.

tval — a variable type attribute which enables variables to contain a non-ready
value. The variable can be cast to the “original” C++-type variable, which makes the
thread of execution suspend until the value becomes ready.

tptr — a T++ analogue of C++ pointers which can hold references to a non-ready
value.

tout — a function parameter attribute used to specify parameters whose values are
produced by the function. This is a T++ analog of the “by-reference” parameter
passing in C++.

tct — an explicit T-context specification. This keyword is used for specification of
additional attributes of T-entities.

tdrop — a T++ -specific macro which makes a variable value ready. It may be
very helpful in optimization when it’s necessary to make non-ready values ready
before the producer function finishes.

8 Runtime Performance

The detailed performance study of Open TS runtime is out of the current paper scope
and will be published elsewhere. However, overall runtime performance and quality is
good enough to stimulate many groups outside of Program Systems Institute to

310 S. Abramov et al.

develop their own applications with Open TS (see below). Best speedup achieved
with image-processing application is approximately 60% of linear speedup on 32-
processor computational cluster with Scalable Coherent Interface (SCI) interconnect.

9 Applications

Approximately a dozen of applications have been developed with the help of T-
system. Some of them are the following:

• Plasma physics modeling tool
• Aerodynamics simulation package
• Tools for computational modeling in chemistry
• Automatic text categorization package
• Radar image modeling application
• Remote sensing images processing

10 Support

Open T-System is being developed in the Program System Institute of the Russian
Academy of Sciences (PSI RAS) as a key technology in the SKIF Super-Computing
project. The system support can be obtained via e-mail: opents@botik.ru
(developers’ conference).

11 Work in Progress

We are also working on various application-oriented T-libraries. Such libraries are
represented as the T++ code (working also in pure C++) and may be used without any
knowledge of T++ or even parallel programming at all. Using the C++ inheritance
mechanism, an application programmer just needs to define several application-
specific methods — virtual functions — to obtain a complete highly-parallel
computational component for a custom high-performance application. Other
development areas if macro-scheduling schemas for meta-clusters and other
distributed systems.

Acknowledgements

This work is supported by joint “SKIF” supercomputing project of Russia and Belarus
and basic research grant from Russian Academy of Science program “High-
performance computing systems on new principles of computational process
organization” and basic research program of Presidium of Russian Academy of
Science “Development of basics for implementation of distributed scientific
informational-computational environment on GRID technologies”.

 OpenTS: An Outline of Dynamic Parallelization Approach 311

References

1. Field A.J, Harrison P.: Functional Programming (International Computer Science Series),
Addison-Wesley (1988)

2. (a) Turchin V.F.: The concept of a supercompiler Transactions on Programming
Languages and Systems.––v .8, N 3 (1986) .292 –325. (b) Ershov A.P., D.,Futamura
Yo.,Furukawa K.,Haraldsson A.,Scherlis W.L.:Selected Papers from the Workshop on
Partial Evaluation and Mixed Computation. New Generation Computing. v.6 , N 2 –3.

3. (a) Abramov S. M., Adamovich A. I., Kovalenko M. R.: T-system as a programming
environment with automatic dynamic support parallelization support. An example with
implementation of ray-tracing algorithm Programmirovanie, 25 (2), 100–107.(in
Russian) (b) Abramov S. M., Vasenin V. A. , Mamchits E. E., Roganov V. A.: Slepukhin
A.F. Dynamic parallelization of programs based on parallel graph reduction. A software
architecture of new T-system version. Proceedings book of MIPHI scientific session, 22-
26 January 2001, v. 2, Moscow, 2001. (in Russian)

4. High-level Parallel Programming and Applications Workshop 2003 Proceedings in
Parallel Processing Letters , .v. 13, issue 3.

5. Gregory V.: Wilson (Editor), Paul Lu (Ed.) Parallel Programming Using C++ MIT Press, 1996
6. H-W. Loidl , F. Rubio , N. Scaife, K. Hammond , S. Horiguchi , U.Klusik , R. Loogen ,

G.J. Michaelson , R. Pena , S. Priebe ,A.J. Rebon and P.W. Trinder: Comparing parallel
functional languages,: programming and performance. J. of Higher-order and Symbolic
Computation, 2003

7. J.B. Carter, D. Khandekar, L. Kamb: Distributed shared memory: where we are and where
we should be headed. Fifth Workshop on Hot Topics in Operating Systems (HotOS-V)
May 04 - 05, 1995 Orcas Island, Washington

8. M. J. Vianna. E. Silva, S. Carvalho, J. Kapson,: In Proceedings of the 2nd European
Conference on Pattern Languages of Programming (EuroPLoP '97). Siemens Technical
Report 120/SW1/FB. Munich, Germany: 1997

9. Andrei Alexandrescu.: “Modern C++ Design: Generic Programming and Design Patterns
Applied” , Addison Wesley Professional., ISBN: 0201704315;2001

10. L. V. Kaleev, Sanjeev, Krishnan :Charm++: Parallel Programming with Message-Driven
Objects. In [5] 175-213

11. James C. Phillips Gengbin Zhengy Sameer Kumary Laxmikant V. Kaley :NAMD:
Biomolecular Simulation on Thousands of Processors. In: Supercomputing 2002
conference proceedings http://sc-2002.org/paperpdfs/pap.pap277.pdf

12. Alexey Lastovetsky: mpC - a Multi-Paradigm Programming Language for Massively
Parallel Computers, ACM SIGPLAN Notices, 31(2):13-20, February 1996

13. Cilk: Efficient Multithreaded Computing by Keith H. Randall. Ph. D. Thesis, MIT
Department of Electrical Engineering and Computer Science. June 1998.
http://supertech.lcs.mit.edu/cilk/

14. Pointon R.F. Trinder P.W. Loidl H-W.: The Design and Implementation of Glasgow distributed
Haskell: IFL'00 - 12th International Workshop on the Implementation of Functional Languages,
Aachen, Germany (September 2000) Springer Verlag LNCS 2011, pp 53-70

15. Yukihiko Sohda, Hirotaka Ogawa, Satoshi Matsuoka OMPC++ - A Portable High-
Performance Implementation of DSM using OpenC++ Reflection. Lecture Notes In
Computer Science; Vol. 1616 pp 215-234 Proceedings of the Second International
Conference on Meta-Level Architectures and Reflection , 1999,

312 S. Abramov et al.

16. F. Cantonnet, T. El-Ghazawi: UPC Performance and Potential: A NPB Experimental Study,
in Supercomputing 2002 conference proceedings http://sc-2002.org/paperpdfs/pap.
pap316.pdf

17. CxC Programmer's Manual. Engineering Intelligence Corporation, 2004, available at
http://www.engineeredintelligence.com/

18. Sankaran S. , Squyres J.M. , Barrett D., Lumsdaine A. , Duell J. , Hargrove P. Roman E.
The LAM/MPI Checkpoint/Restart Framework: System-Initiated Checkpointing,
Proceedings, LACSI Symposium, October 2003, Sante Fe, New Mexico, USA.

19. Chiba S. A Metaobject Protocol for C++ , In: Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), page 285-
299, October 1995.http://www.csg.is.titech.ac.jp/~chiba/openc++.html

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 313 – 320, 2005.
© Springer-Verlag Berlin Heidelberg 2005

NumGrid Middleware: MPI Support for
Computational Grids1

D. Fougere†, M. Gorodnichev‡, N. Malyshkin‡, V. Malyshkin‡,
A. Merkulov‡, and B. Roux†

‡
 Institute of Computational Mathematics and

Mathematical Geophysics (ICM&MG),
Russian Academy of Sciences,

pr.Lavrentieva 6, 630090, Novosibirsk, Russia
{maxim, nikmal, malysh, merkulov}@ssd.sscc.ru

†
L3M / UMR 6181 CNRS-Universités d’Aix-Marseille,

38, Rue Frédéric Joliot-Curie,
13451 Marseille cedex 20

{broux, fougere}@l3m.univ-mrs.fr

Abstract. The paper presents the design and the first stage of implementation of
the NumGRID middleware that is devoted to the development of the multicom-
puter grid software for the large scale numerical simulation. Global addressing
of the NumGRID computational resources and MPI programs execution is pro-
vided. This stage is the basis for the development of supporting system that
automatically provides the dynamic properties of MPI applications.

1 Introduction

With evolution of mathematical modeling and creation of high-performance computer
systems, many scientific applications have appeared that demands increasing compu-
tational performance, higher than any of available supercomputers can provide. In
particular, for the super large scale numerical modeling it is necessary to integrate
several supercomputers, i.e., to create a grid. Not any application can be well solved
on grids because of slow communications. However, such application problems as
search for alien civilizations [1] and decoding the human genome are successfully
running on grids.

Another problem is rapid progress in microprocessor development which forces us
to use heterogeneous computer systems for solution of the large scale problems. In
particular, in 2005 the ICM&MG plans to exploit the following multicomputers: the
32 processors MVS-1000, based on the alpha microprocessor (833 Mhz), the 128
processors MVS-1000, based on the alpha microprocessor (633 Mhz) and the 60
processors HP cluster, based on the Intel Itanium II microprocessor. Therefore, there
is a necessity to create the software that will provide the large-scale simulation in het-

1 This work is partially supported by the grants of NWO-RFBS contracts NWO-RFBS

047.016.007; NWO-RFBS 047.016.018; Russian Fund for basic research, contract RFBR
04-01-00272 and PhD grant from the French Ministere Education Nationale (MEN-DRIC).

314 D. Fougere et al.

erogeneous environments. For now, numerous GRID projects oriented to different
applications are under development [1-5].

The speed of communication is permanently growing and now it is possible to or-
ganize numerical simulation on GRID of multicomputers. In 2004, the co-operative
project NumGRID intended for the creation of the necessary grid system software
started in Novosibirsk (ICM&MG) and in Marseille (L3M, CNRS) [6].

2 Objectives

The main objective of the NumGRID project is to provide the use of remote multi-
computers for large-scale numerical simulation. In the coming years the proper com-
putational resources for simulation of protoplanetary disc evolution and galaxy forma-
tion [7,8] should be provided. These models, developed in the frame of the project,
devoted to the investigation of the germ of the life on the Earth, demand practically
unlimited resources for simulation.

Another objective is to provide the exploitation of the heterogeneous net of multi-
computers for numerical simulation.

3 Basic Requirements

NumGRID requirements provide the conditions for supporting high performance exe-
cution of application MPI programs of numerical modeling. These requirements are:

1. Homogeneous nodes multicomputers only are included into NumGRID.
2. Each node of a multicomputer can be an SMP system (2 processors or more)
3. MPI programs should be executed on NumGRID without corrections. Global ad-

dressing of all the NumGRID resources should be provided.
4. Automatic providing of the dynamic properties of application programs (tunability,

dynamic load balancing, program execution monitoring, reliability)
5. Security and safety of calculations on the Grid

4 Stages of the Project

Design and implementation of the NumGRID project is done in several stages. The
first one includes:

• implementation of all the basic means of resource and job management,
• providing communication layer for sending messages between computational

nodes of different multicomputers (clusters),
• implementation of MPI over this layer.

Thus, the first stage of NumGRID project, NumGRID-I, allows running MPI-jobs
on several clusters. If dynamic properties of application are programmed then these
properties will be also provided by NumGRID-I software.

The second stage includes a number of “assembler” level tool that facilitate pro-
gramming of dynamic properties of application program. This tool includes the

 NumGrid Middleware: MPI Support for Computational Grids 315

library for programming dynamic resources allocation, manager of dynamic memory
and means of processes synchronization and monitoring. Thus, the second stage pro-
vides automation of programming of dynamic resources allocation, monitoring of the
execution of application parallel program, dynamic redistribution of workload,
tunability of application programs to all the available resources.

On the third stage the high level asynchronous programming system intended for
use in numerical modeling should be developed.

The rest of this paper describes the design and implementation of the NumGRID-I.

5 Related Work

Here, we describe and discuss some more or less known Grid-enabled MPI[9,10] li-
braries and other solutions that could be employed to run MPI programs on grids.
Some of them are more suitable for running MPI programs on Grids than others, but
any of them either contains hard restrictions or is only a test prototype.

MPICH-G2 [11] is a well-known grid-enabled MPI library from Globus Toolkit. The
main restriction is that all worker nodes inside clusters should have public IP ad-
dresses (not from private networks) and have a possibility to be addressed from out-
side the cluster.

MPICH-MAD III [12]. This is french grid-enabled MPI library. The restrictions are:

• The source code is based on MPICH1.2.x. There is no support for other versions of
MPICH

• MPICH (v 1.2.x) is only supported. There is no support for other MPI libraries, for
example, LAM-MPI, SCALI MPI, MPICH2

• There are problems with compilation, the system functioning is not stable.

MP-MPICH [13]. The restrictions are:

• The source code is based on MPICH1.2.0. There is no support for other versions
of MPICH

• The last version appeared three years ago.
• Myrinet and SCI cards are not supported
• MPICH (v 1.2.x) is only supported. There is no support for other MPI libraries, for

example LAM-MPI, SCALI MPI, MPICH2

PACX-MPI [14]. The restrictions and problems are:

• The software is buggy (compiling, working with sockets, etc)
• There should be two special gateway nodes in every cluster that uses PACX MPI.

These nodes are involved in MPI topology (+ 2 MPI_Size) and should have the
same network interfaces as worker nodes. Thus, master node cannot be used as a
gateway. This leads to several problems in cluster development and maintenance.

Virtual Private Networks, SSH tunneling, NAT etc. These solutions are very inef-
ficient because tunneling mechanisms know nothing about the topology of MPI tasks.

316 D. Fougere et al.

6 NumGRID Approach

One of the problems of MPI use on global grids is that all the multicomputers restrict
access to their internal nodes from outside. Thus, MPI packets cannot reach their ad-
dresses.

The initial idea of NumGRID-I is the following. A special program is loaded into
master-nodes of all the multicomputers included into the NumGRID. This program is
called MPI_gateway. This program is actually a gateway service for the MPI-packets
routing. MPI_gateway provides receiving and sending packets to the internal (private)
nodes of any NumGRID multicomputer. MPI_gateway transfers MPI packets from
the internal nodes of a multicomputer (Cluster 1) to the MPI_gateway installed on the
master of another multicomputer (Cluster 2). Later the second MPI_gateway transfers
the received MPI messages to its internal nodes (inside cluster 2)

Another part of the NumGRID software is a special NumGRID_MPI library with
an opportunity to send messages not only within a local network, but also through
MPI_gateway server to global networks. We proceed from the assumption that there
are some MPI libraries pre-installed on each cluster/SMP-system. Usually these MPI
libraries are installed by the cluster’s vendors and are well optimized (for example
SCALI MPI). Therefore, it is desirable that application programs use these optimized
MPI libraries. Implementing this idea, the NumGRID_MPI library should be actually
a "wrapper" of the pre-installed MPI functions. That is, inside a component of a grid
(clusters and/or the SMP), all messages are transferred using pre-installed MPI li-
brary, and all messages "outside" are transferred using the developed NumGRID_MPI
library through MPI_gateway.

7 Implementation of NumGRID-I

NumGRID software is developed as a cross-platform environment that can be freely
used on different hardware and with different operating systems. As the first Num-
GRID software implementation is done for the GRID of clusters both terms “multi-
computer” and “cluster” are used here equally.

For now the NumGRID software was tested on:
Processors: Intel Celeron/P3, AMD Athlon, Alpha
OS: Windows 2000/XP, Red Hat Linux
Compilers: Visual C++ 6.0, VS.NET, GNU C++
MPI implementations: MPICH, LAM-MPI

The NumGRID software consists of 6 components: 1).NumGRID_MPI library,
2).NumGRID_gateway, 3).Cluster management module, 4).Client module (console
tools & IDE), 5).Security subsystem

NumGRID_MPI library is a set of "wrappers" for the pre-installed MPI functions.

NumGRID_gateway is the service for transferring MPI packages inside and outside
of the NumGRID clusters.

Cluster management module allows NumGRID software to use the static cluster fa-
cilities such as starting users' jobs, data transfer to/from clients, allocation of re-
sources and so on. The module can work with commonly used system software that

 NumGrid Middleware: MPI Support for Computational Grids 317

manages cluster's queue. The first queue management systems that are supported are
PBS, SGE (Sun Grid Engine) and MVS1000. This module is very close to Globus
job-managers modules [3].

Client module (console tools & IDE). It is a cross-platform environment that unifies
the process of running computational jobs on NumGRID. Jobs of the NumGRID can
be represented as a set of source files, executable modules, data files, lists of compu-
tational resources on which these jobs can be run.

The algorithm of jobs running on NumGRID looks as follows:

− Copy source files to all remote multicomputers
− Compilation of the user's application on each multicomputer (if they have the

same architecture it is possible to compile only once)
− Copy data files that are required by user's program (input)
− Run all the processes on all the multicomputers
− Get the program's result to the user's local host

For controlling of this operations sequence, a scenario for every user’s job should
be written. Program scenario includes: user's program source files description, com-
piling process description, running jobs description, input/output data files descrip-
tion, resources specifications and a specification of results gathering process.

Every scenario file has a blocked structure. Every block describes the job behavior
on a separate multicomputer. Inside a block a specific for these multicomputer set-
tings are described. There are also global directives that affect the whole grid. The
jobs scenario file is similar to Globus .RSL files but contains additional, specific to
NumGRID tags. The client module supports Windows and Unix platforms, graphical
IDE is based on QT.

Security subsystem. One of the key moments when carrying out numerical experi-
ments on grid is security providing. Current version of NumGRID security subsystem
is based on Kerberos. Kerberos allows to carry out identification of network services
and users. Each multicomputer that is planned to be included into NumGRID, should
have Kerberos control center and be controlled by the network service, which can be
accessed only by the users, registered in Kerberos. It is important, that access to Ker-
beros center should be closed for all except the master nodes of NumGRID clusters.

8 Experiments

A number of experiments have been carried out with the current implementations of
MPI-gateway and grid-enabled MPI library. The experiments were

1. to demonstrate the possibility to run MPI-programs with the MPI-processes spread
over several clusters using NumGRID software;

2. to reveal the problems, which could appear on the way.

Three clusters were involved in testing of NumGRID software. Two of them,
namely Scali and CHOEUR, are interconnected with the Gigabit Ethernet network of
L3M laboratory of CNRS-d’Aix-Marseille university. The third one, P2chpd-cluster,
is located at UFR de Mecanique of the University of Lyon.

318 D. Fougere et al.

Cluster name Choeur Scali P2chpd-cluster
Intranetwork Fast Ethernet SCI Dolphin SCI Dolphin
Hosts 2 processors AMD

Athlon MP 2000+
(1.67 GHz), Mem. 2Gb

2 proc. AMD Ath-
lon MP 1800+ (1.5
GHz), Mem. 1Gb

2 proc. AMD Ath-
lon MP 2000+ (1.67
GHz), Mem. 2Gb

Computational
nodes

2 proc. AMD Athlon
MP 1.53 GHz, Mem.
1Gb

2 proc. AMD Ath-
lon MP 1800+ (1.5
GHz), Mem. 1Gb

2 proc. AMD Ath-
lon MP 2000+ (1.67
GHz), Mem. 1Gb

Number of compu-
tational nodes

20 5 40

Test 1. Shift of data along the virtual circle of MPI-processes

Description:Each process with the rank R passes some double precision numbers to a
process with the rank (R+1) mod P, where P is the number of processes.

Purpose: This is a simple example of MPI-program, which should demonstrate the
capability of NumGRID software to support basic MPI communications.

Algorithm: For the sake of simplicity, the P is assumed to be even. First, all the proc-
esses with even ranks send their data to their “right” neighbors, and then odd-ranked
processes do the same.

Result: This was the first test to try. It has been passed successfully for P=2,4,6,8
with different distributions of processes between Choeur and Scali and between
Choeur and P2chpd-cluster. There were no problems with the Choeur and Scali. The
same for the Choeur and P2chpd-cluster took a lot of efforts and time to achieve an
agreement on policies of firewalls between these two clusters.

Test 2. Each process receives data from each other process

Description: In turns, the processes receive messages from all the other processes.
The messages are ordered by the increasing rank of sending processes.

Purpose: This test demonstrates that NumGRID implementation of MPI keeps the
supposed order of incoming messages.

Algorithm:
for i from 0 to P-1

{if R equals I
{for j from 0 to P-1:

if not j equals R,
receive a message from the process with rank j}

else,
send a message to the process with rank i

}

Result: The test has passed for 2, 4, 6 and 8 processes distributed (in different combi-
nations) between Choeur and Scali and between Choeur and P2chpd-cluster. All the
messages have been received in the expected order.

 NumGrid Middleware: MPI Support for Computational Grids 319

Test 4. Speed of communication (. Bessonov’s test)

Description: The test is composed of several series of data exchanges between MPI-
processes. The difference between the series lies in the number of exchange opera-
tions and the size of the messages. The results are given as the average speed ob-
served during a series, i.e. the ratio of transferred data volume (Mbytes) in the series
to the time the series took. The time of a series comprises not only the time of data
transfer but also latencies, the time while the processes are waiting for each other and
other overheads. O.Bessonov published the results of his experiments on Scali and
Choeur in [15].

Purpose: The time costs of a series of data exchanges are studied depending on the
number of exchanges and the sizes of the messages.

Algorithm: Exchanges are carried out in series. Within a series, two processes send
messages to and receive from each other in turns. The parameters of the series are
presented in the table, see Results section.

Results: The results again demonstrate the great difference between intra-cluster and
inter-cluster communication speeds and show the role of latencies. The communica-
tion scheme is typical for numerical iterative computations.

Speed of communications,

Mbytes/sec
Series Number

of send-
recv pairs

Message
size, in 8
bytes
numbers

Amount of
transfer for
the series,
Mbytes Nodes of

Choeur
Choeur-
Scali

Choeur-
P2chpd

1 8192 64 8 5.66 0.010 0.010
2 4096 128 8 8.48 0.019 0.014
3 2048 256 8 13.71 0.032 0.029
4 1024 512 8 22.92 0.064 0.058
5 5120 1024 80 33.74 0.12 0.11
6 2560 2048 80 44.27 0.85 0.76
7 1280 4096 80 51.33 1.41 0.62
8 640 8192 80 54.54 0.93 0.71

Test 5. Parallel implementation of the explicit Poisson solver

Description: Solution of 2D Poisson equation with the finite differences explicit 5-
point stencil scheme. It is one of the simplest examples of the somewhat real compu-
tational problem.

Purpose: This test demonstrates how NumGRID software copes with the execution
of the computational MPI-program.

Algorithm: Data-partitioning parallelisation of the explicit scheme on a virtual line of
processors.

Results: Test successfully passed for 2, 4, 6 and 8 processes. The correctness of data
transfers has been demonstrated. When the size of the mesh (that is equal actually to

320 D. Fougere et al.

the size of the problem) is large enough, good speed up can be observed when calcu-
lations begin to dominate over communications.

9 Conclusions and Future Work

A lot of firewalls between clusters make great administrative problems. This is be-
cause NumGRID uses TCP protocol for communications between host machines and
most of the TCP ports are closed by the firewalls. The solution is to use some stan-
dard communication services that are always open. The most widely used is SSH pro-
tocol and it is desirable to use in NumGRID two transport subsystems.

The measurements of communications speed between differently located processes
reveal the ultimate heterogeneity of the target computer system. It is important to note
that the performance of different nodes is different as well. Moreover, in a general
setting, nodes might be of different architectures. The later should be taken into ac-
count when NumGRID_MPI is designed and implemented. Also, the heterogeneity of
the network and processor elements should be taken in to account when application
programs to be run on such a computer system are developed.

This work was scheduled in such a way in order to start NumGRID software ex-
ploitation on ICM&MG + NSU, L3M Marseille + UFR Lyon clusters as soon as pos-
sible. Now our main efforts are concentrated on the implementation of the executive
subsystem.

References

1. SETI program, http://setiathome.berkeley.edu
2. European CrossGrid TestBed, http://cgi.di.uoa.gr/~xgrid/archive.htm
3. European DataGrid , http://eu-datagrid.web.cern.ch/eu-datagrid/
4. LHC Grid, http://lcg.web.cern.ch/LCG/
5. Globus Toolkit, www.globus.org
6. D.Fougere, N.V.Malyshkin, V.E.Malyhskin, B.Roux. The NumGRID metacomputing sys-

tem. Bulletin of the Novosibirsk Computing Center, p.57-69. NCC Publisher. Novosi-
birsk.2004.

7. Snytnikov V.N., Dudnikova G.I., Gleaves J.T., Nikitin S.A., Parmon V.N., Stoyanovsky
V.O., Vshivkov V.A., Yablonsky G.S., Zakharenko V.S. Space chemical reactor of proto-
planetary disk // Adv. Space Res., V. 30, No. 6, pp. 1461-1467, 2002.

8. V.N.Snytnikov, V.A.Vshivkov, E.A.Kuksheva, E.V.Neupokoev, S.A.Nikitin, A.V.Snyt-
nikov. Three-Dimensional Numerical Simulation of a Nonstationary Gravitating N-Body
System with Gas // Astronomy Letters, v. 30, no. 2, pp.124-138, 2004.

9. MPI standard, http://www-unix.mcs.anl.gov/mpi/
10. MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/
11. MPICH-G2, http://www.hpclab.niu.edu/mpi/
12. MPICH-MAD III http://dept-info.labri.fr/~mercier/mpi.html
13. MP-MPICH http://www.lfbs.rwth-aachen.de/content/mp-mpich
14. PACX-MPI http://www.hlrs.de/organization/pds/projects/pacx-mpi/
15. O.Bessonov, D.Fougere, B.Roux. Using a Parallel CFD Code for Evaluation of Clusters

and MPPs. / Proceedings of IPDPS, 2003, p.65-73, Nice, France. IEEE, PR01926, 2003.

A Practical Tool for Detecting Races in
OpenMP Programs�

Young-Joo Kim,1 Mi-Young Park,1 So-Hee Park,2 and Yong-Kee Jun1,��

1 Gyeongsang National University, Jinju
jun@gsnu.ac.kr

2 Kyungsung University, Busan,
Tel +82-55-751-5996, Fax +82-55-762-1944,

South Korea
heeya@star.ks.ac.kr

Abstract. Detecting data races or just races is important for debugging
OpenMP programs, because races result in unintended nondeterminis-
tic executions of the program. The previous tool to detect the races in
OpenMP programs monitors a serial execution of the program, but un-
fortunately cannot guarantee to verify the existence of races even in the
programs only with the directives. This paper presents a practical tool
which monitors a parallel execution of standard OpenMP program, and
not only verifies the existence of races but also detects first races for each
shared variable in the programs.

1 Introduction

It is still more difficult to debug the industry-standard OpenMP programs [2]
than sequential programs because of unintended nondeterministic executions
incurred by the notorious parallel program bugs, called data races or shortly
races [11]. A race is a pair of instructions in a set of parallel threads accessing a
shared variable with at least one write-access without appropriate inter-thread
coordination.

Traditional cyclic debugging with breakpoints is not often effective in the
presence of races, because the breakpoints can change the execution timing
causing the erroneous behavior to disappear. The previous tool [4] to detect
the races in OpenMP programs monitors a serial execution of the program, but
unfortunately cannot guarantee to verify the existence [3,12] of races even in the
programs only with the directives.

This paper presents a practical tool called RaceStand which monitors a par-
allel execution of standard OpenMP program, and not only verifies the existence
of races but also detects first races [1,10] for each shared variable in the programs.
RaceStand is based on scalably efficient techniques of on-the-fly race detection,

� This work was supported in part by IT Leading R&D Support Project funded by
Ministry of Information and Communication, Republic of Korea.

�� In Gyeongsang National University, he is also involved in the Research Institute for
Computer and Information Communication (RICIC).

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 321–330, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

322 Y.-J. Kim et al.

· · ·
C$OMP PARALLEL DO

C$OMP+PRIVATE(I)

DO I = 2, N

· · ·
IF (X(I-M) .EQ. · · ·) · · ·
IF (· · ·) X(I) = · · ·
X(I+M) = · · ·
· · ·

ENDDO

C$OMP END PARALLEL DO

· · ·

Fig. 1. An OpenMP Parallel Program

and can be accessed remotely via the web interface of the Internet through the
client-server relationship between programmers and RaceStand.

The following section first introduces the issues on debugging races in shared-
memory parallel programs, and then Section 3 explains the practical techniques
employed in RaceStand to detect the races occurred in an execution instance of
OpenMP program. Section 4 presents the web-based structure of RaceStand
to preprocess the debugged programs and monitor their execution instances
remotely through client-server relationship. The final section concludes our work
suggesting some future work.

2 Background

An industry-standard OpenMP program [2] may include a set of compiler di-
rectives and runtime routines for parallel loops and two kinds of inter-thread
coordination: PARALLEL DO directive to fork a thread team, END PARALLEL DO
directive for a team to join, BARRIER directive to synchronize all at once, and
CRITICAL/ORDERED directive or locking routines to create critical sections. We
consider that event synchronization may be defined as user-defined routines. The
nesting level of an individual loop is equal to one plus the number of enclosing
outer loops; a loop may enclose zero or more disjoint loops at the same level. The
nesting depth of a loop is the maximum nesting level of the loop. In Figure 1,
the forked threads share the work specified with the DO statement and the loop
body, where the index variable I is private to each thread, and two variables {N,
M} and one array X are shared among the threads.

The most serious problem of effective OpenMP programming is that it is
more difficult to debug the parallel programs than sequential programs for uni-
processor computers. Such the difficulty is mainly caused by unintended nonde-
terministic executions of parallel programs which are incurred by uncoordinated
parallel threads accessing a shared variable with at least one write-access. Such
a kind of behaviors are called data race or shortly race [11] which is the most
notorious kind of bugs in parallel programs including OpenMP programs. This
program shown in Figure 1 have data races depending on the values of N and
M. For example, consider the case in which the value of M is 1 and the two IF-

A Practical Tool for Detecting Races in OpenMP Programs 323

conditions of each thread are satisfied in such the case that I is 2 and 3. The
first thread with I = 2 may perform one read access to X(1) and then two write
accesses to X(2) and X(3). The second thread with I = 3 may perform one
read access to X(2) and then two write accesses to X(3) and X(4). In this case,
the execution instance involves two data races between the two parallel threads,
because these two uncoordinated parallel threads may access shared variables
X(2) and X(3) with at least one write-access, respectively. Theses data races
result in the nondeterministic values of X(2) and X(3).

It is ineffective to use traditional breakpoints for detecting data races, be-
cause the breakpoints can make the execution timing interfered and then may
make erroneous behaviors disappear. Most parallel debuggers are not effective
to detect data races either, but often resorts only on programmer’s ability. To
dynamically detect threading errors including data races in the relaxed sequen-
tial programs which is parallelized with only OpenMP directives, the projection
technology [4] of Intel Thread Checker compiles the program with binary instru-
mentation to analyzes threading errors while every instruction in the program is
executed, and then monitors a serial execution of the instrumented program to
project the parallel memory traces of logical threads derived from the annotated
sequential memory trace that is treated as the specification for the OpenMP pro-
gram. However, Thread Checker cannot guarantee to verify the existence [3,12]
of races even in such the programs only with the directives, because it cannot
discriminate a logical thread with its parent or children in nested parallelism.

As in all kinds of debugging process, locating and eliminating the first races
[1,7,11] is also important in debugging parallel programs, because the removal of
such races may make other races disappear. Intuitively, the races that occurred
first are the races between two accesses that are not causally preceded by any
other accesses also involved in races. The functionality for detecting first races
also has the property of race verification, because there does not exist a race in
an execution if and only if there does not exists a first race in the execution.
However, it is preferable to verify the races appropriately, since the indefinite
iterations of detecting first races must incur still greater monitoring overhead
than verifying races in parallel programs which are usually large in the scale of
their execution time.

3 The Practical Techniques

This paper presents a practical race detection tool called RaceStand which is
based on on-the-fly techniques and then requires still less storage space than
post-mortem trace analysis. In order to detect races, we determine during the
monitored execution if a thread’s access to a shared variable is logically concur-
rent with any previous accesses to this variable and results in a race. This requires
monitoring the parallel threads accessing shared variables, and maintaining an
access history for each shared variable during an execution instance of program.
We call this monitoring algorithm the race detection protocol [1,3,8,12,13]. For
this protocol to operate whenever an access to a shared variable occurs, we need
to determine the logical concurrency between the current thread and each previ-
ous thread in the access history of the variable. This logical concurrency between

324 Y.-J. Kim et al.

Fig. 2. The User Interface of RaceStand Step 1

two threads is determined from on-line information of each thread, called the
thread label . A thread label is generated by the labeling algorithm [5,12,14] on
each thread operation such as fork/join operation or each inter-thread coordi-
nation such as barrier operation, and may be stored in the access history of the
corresponding shared variable.

Previous on-the-fly tools often show the serious on-line labeling bottleneck
which is incurred from using a centralized data structure which is globally-shared
among the threads. RaceStand is based on the scalable labeling schemes [5,14]
which generate each label of the newly created threads using only the private
labels of the parent threads. And, another drawback of existing on-the-fly race-
debugging tools is the serious bottleneck of run-time protocol which is incurred
from serializing all accesses to the same shared access history. RaceStand is based
on access filtering schemes [6,8] which examine to filter the current access if it
is possible to be involved in a first race.

RaceStand supports two kinds of effective techniques for debugging races:
verifying [3,12] the existence of races, and locating the first races [1,7,8,9,10,13]
appeared in an execution instance of program with nested parallelism and inter-
thread coordination by barriers [7,8], critical sections [10], and event synchro-
nization [1,9,13]. For the programs with explicit event synchronization, one tech-
nique [9] for RaceStand restructures the monitored program to generates the
corresponding sequential program which preserves the semantics of the original
program. Monitoring an execution instance of the restructured program uses
either the two-pass [13] or multi-pass [1] detection protocol to detect the first
races in the corresponding execution instance of the original program. Although
the two-pass protocol works only for the programs with ordered synchroniza-
tion, it can detect the first races in the restructured programs with the event
synchronization, because any pair of the corresponding points of the event syn-
chronization are executed in an ordered sequence in the corresponding execution
of the sequential program.

The storage space consists of two components: the space to store access his-
tories for all shared variables monitored, and the space to store thread labels of

A Practical Tool for Detecting Races in OpenMP Programs 325

Fig. 3. The User Interface of RaceStand: Step 2

Fig. 4. The User Interface of RaceStand: Step 3

326 Y.-J. Kim et al.

Fig. 5. The User Interface of RaceStand: Step 4

simultaneously active threads. RaceStand basically stores a constant-sized label
generated by scalable labeling schemes [5,14] in each entry of access histories,
and stores only two labels in each access history in case of programs with nested
parallelism and no other inter-thread coordination. We may monitor programs
in the canonical sequential order to store only one thread label for simultane-
ously active threads. For the programs even with explicit event synchronization,
RaceStand supports a practical technique [9] which restructures the monitored
program to generates the corresponding sequential program which preserves the
semantics of the original program. The detection time consists of two main com-
ponents: the time to perform race detection protocol at each access, and the
time to perform thread labeling on every creation of threads in the execution.
Since each entry of access history is a thread label and every access performs the
protocol that determines logical concurrency with a previous access, the time to
perform race detection protocol mainly depends on the labeling scheme used.

RaceStand is based on two efficient labeling schemes [5,14]: T-BD Labeling
used for all cases of monitored programs, and NR Labeling optimized for the
programs without inter-thread coordination. The time consumed by these two
labeling schemes each depends only on the maximum nesting depth of the pro-
gram that has no inter-thread coordination.

4 The Structure and Interface

We have been developing a web-based RaceStand to make it practical to debug
races in OpenMP programs remotely through client-server relationship between
programmers and RaceStand. Its web interface is implemented with Java Server
Pages (JSP) to serve the user at the client site and execute the commands
received from the client at the server site.

JSP technology enables rapid development of Web-based applications that
are platform independent, and separates the user interface from content gener-

A Practical Tool for Detecting Races in OpenMP Programs 327

Fig. 6. The User Interface of RaceStand: Step 5

Fig. 7. The User Interface of RaceStand: Step 6

ation, enabling designers to change the overall page layout without altering the
underlying dynamic content. Using JSP technology, the client programmers can

328 Y.-J. Kim et al.

Fig. 8. The User Interface of RaceStand: Step 7

debug OpenMP parallel programs at a remote parallel computer without any
additional tool but their web browser.

The RaceStand server invokes a preprocessor to instrument the race-detection
engines into the debugged program, executes the instrumented program to detect
data races, and notifies the results of monitored execution to the RaceStand
client.

For each access to a shared variable, the preprocessor allocates an array to
store one access history for each shared variable. And, at each source location just
before the static reference to read/write to a shared variable, the preprocessor
inserts one of two function calls which inspect and may update the access history
for either race verification or first race detection. The preprocessor also inserts
other function calls to generate thread labels at each location just before the
static operations of fork/join and inter-thread coordination.

To support the intuitive visualization, the preprocessor inserts the corre-
sponding function calls to compute graphic information for displaying thread
structure and its abstraction captured in the execution of program. For source-
level debugging, the preprocessor add a flag variable to hide all of the instru-
mented codes. The set of monitoring functions can be chosen by the user in its
initial debugging session of RaceStand, and generates debugging information on
the detected races during an execution instance of the debugged program. A
report to detected races includes both of the shared variables associated with
the race and the static locations of accesses involved in the race.

RaceStand provide the users with four main menus: the Configurator to
configure detection engines at their own will, the Instrumentor to make object
program instrumented with the selected engines, the Analyzer to execute the

A Practical Tool for Detecting Races in OpenMP Programs 329

instrumented program, and the Visualizer to report the detected races with
debugging information either in text or three-dimensional graphs. The six figures
shown Figure 2-7 shows a session instance of six steps displayed at a client site
of RaceStand. Figure 2 shows the first step in RaceStand Configurator, in which
users can upload a source file to be debugged; Figure 3 shows the second step in
Configurator for case that the source file requires a set of header files. Figure 4
shows the third step in Configurator for users to make sure the thread model of
the debugged program which is analyzed by RaceStand to select the appropriate
set of race detection engines. Figure 5 shows the fourth step in Configurator
for users to suggest their priorities in selecting the detection engines in their
scalability of visualization, scalability of performance, and efficiency in required
space or time.

As the fifth step, Figure 6 shows the set of detection engines selected by
RaceStand Instrumentor with reference to both the results of source-code anal-
ysis and user’s selection of analysis properties. As the sixth step, Figure 7 shows
the instrumented source code with the selected engines shown in Figure 6. In the
figure, label fork2 is the declared space to allocate the label space to be con-
sumed by English-Hebrew (EH) Labeling [3]; EHAddChild Label EH () (or
EHAddLock Label EH ()) is the engine call for each forked thread (or critical
section) to generate an EH label; and LCCheckRead () for the read access to
execute the race detection protocol. Figure 8 shows a report of two races as the
final step which is detected during an execution of the instrumented program
shown in Figure 7. In the figure, RaceStand produces three pairs of race com-
ponents each of which is delimited by semi-colons: the source line number of
(locked) read/write access involved in the race, and the values of English and
Hebrew labels stored in the corresponding threads.

5 Conclusions

RaceStand monitors a parallel execution of standard OpenMP program based
on scalably efficient techniques of on-the-fly race detection, and can be accessed
remotely via the web interface of the Internet through the client-server relation-
ship between programmers and RaceStand. Since RaceStand determines during
the monitored execution if a thread’s access to a shared variable is logically con-
current with any previous accesses to this variable and results in a race, it can
not only verify the existence of races but also detect first races for each shared
variable in the programs. We now have a plan to work on extending RaceStand
to include more elaborate facilities that may help users easy to understand the
debugging information and to add to RaceStand more detection engines to be
developed in the future.

References

1. Choi, J., and S. L. Min, “Race Frontier: Reproducing Data Races in Parallel-
Program Debugging,” 3rd Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), pp. 145-154, ACM, April 1991.

330 Y.-J. Kim et al.

2. Dagum, L., and R. Menon, “OpenMP: An Industry-Standard API for Shared-
Memory Programming,” Computational Science and Engineering , 5(1): 46-55,
IEEE, January-March 1998.

3. Dinning, A., and E. Schonberg, “Detecting Access Anomalies in Programs with
Critical Sections,” 2nd Workshop on Parallel and Distributed Debugging (WPDD),
pp. 85-96, ACM, May 1991.

4. Intel Corp., Getting Started with the Intel Thread Checker , 2200 Mission College
Blvd., Santa Clara, CA 95052-8119, USA, 2004.

5. Jun, Y., and K. Koh, “On-the-fly Detection of Access Anomalies in Nested Parallel
Loops,” 3rd Workshop on Parallel and Distributed Debugging (WPDD), pp. 107-
117, ACM, May 1993.

6. Jun, Y., and C. E. McDowell, “Scalable Monitoring Technique for Detecting Races
in Parallel Programs,” 5th Int’l Workshop on High-Level Parallel Prog. Models and
Supportive Environments (HIPS), pp. 340-347, IEEE, Cancun, Mexico, May 2000.

7. Jun, Y., and C. E. McDowell, “On-the-fly Detection of the First Races in Programs
with Nested Parallelism,” 2nd Int’l Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA), pp. 1549-1560, CSREA, August 1996.

8. Kim, J., and Y. Jun, “Scalable On-the-fly Detection of the First Races in Par-
allel Programs,” 12nd Intl. Conf. on Supercomputing (ICS), pp. 345-352, ACM,
Melbourne, Australia, July 1998.

9. Kim, Y., and Y. Jun, “Restructuring Parallel Programs for On-the-fly Race De-
tection,” 5th Int’l Conf. on Parallel Computing Technologies (PaCT), pp. 446-451,
Russian Academy of Science (RAS), St. Petersburg, Russia, Sept. 1999.

10. Kim, J., D. Kim, and Y. Jun, “Scalable Visualization for Debugging Races in
OpenMP Programs,” The 3rd Int’l Conf. on Communications in Computing (CIC),
pp. 259-265, Las Vegas, Nevada, June 2002.

11. Netzer, R. H. B., and B. P. Miller, “What Are Race Conditions? Some Issues and
Formalizations,” Letters on Programming Lang. and Systems, 1(1): 74-88, ACM,
March 1992.

12. Mellor-Crummey, J., “On-the-fly Detection of Data Races for Programs with
Nested Fork-Join Parallelism,” Supercomputing , pp. 24-33, ACM/IEEE, Nov. 1991.

13. Park, H., and Y. Jun, “Detecting the First Races in Parallel Programs with Ordered
Synchronization,” 6th Int’l Conf. on Parallel and Distributed Systems (ICPADS),
pp. 201-208, IEEE, Tainan, Taiwan, Dec. 1998.

14. Park, S., M. Park, and Y. Jun, “A Comparison of Scalable Labeling Schemes for
Detecting Races in OpenMP Programs,” Int’l Workshop on OpenMP Applications
and Tools (Wompat), pp. 68-80, West Lafayette, Indiana, July 2001.

Comprehensive Cache Inspection with

Hardware Monitors

Jie Tao1, Jürgen Jeitner2, Carsten Trinitis2, Wolfgang Karl1,
and Josef Weidendorfer2

1 Institut für Technische Informatik,
Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

{tao, karl}@ira.uka.de
2 Lehrstuhl für Rechnertechnik und Rechnerorganisation,

Technische Universität München, Boltzmannstr.3, 85748 Garching, Germany
{jeitner, trinitic, josef.weidendorfer}@in.tum.de

Abstract. Computer systems usually rely on hardware counters and
software instrumentation to acquire performance information about the
cache access behavior. These approaches either provide only limited data
or are restricted in their applicability. This paper introduces a novel ap-
proach based on a hardware cache monitoring facility that exhibits both
the details of traditional software mechanisms and the low–overhead of
hardware counters. More specially, the cache monitor can be combined
with any location of the memory hierarchy and present a detailed view
of the complete memory access behavior of applications. The monitor-
ing concept has been verified using a multiprocessor simulator. Initial
experimental results show its feasibility in terms of hardware design and
functionality with respect to providing comprehensive performance data.

1 Introduction

Within the last decades, both processor and memory speed have been growing
at an exponential rate. Nevertheless, the growth rate of the memory speed is
rather lower, leading to a significant and continously growing gap. Caches, as
fast buffers for reused data, have been introduced to compensate for this. Due to
the complex structure of applications and the memory system, however, the data
stored in caches often can not be reused by the running programs. Cache locality
optimization becomes hence a critical issue for achieving high performance.

A prerequisite for such optimization is performance data that shows the
cache access behavior of applications. Currently, computer systems acquire this
information usually relying on either software profiling and simulation systems
[9] , or hardware counters embedded in modern processors like Intel Pentium
series [6] and Itanium Architecture [5], the IBM PowerPC Architecture [12], and
the DEC/Compaq/Intel Alpha series [3].

The software approaches usually sample a source code or the executables
and record the access information during the execution of a program. These

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 331–345, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

332 J. Tao et al.

systems can provide very detailed performance data and also enable examina-
tion of the access behavior in individual code fragments. However, they are not
generally applicable and lead to large output data sets. The second approach,
the hardware counters, on the other hand, allow precise and low–intrusive on–
line measurements and can provide valuable information about the performance
of critical regions in programs. However, this information is restricted to very
specific, mostly global events like the total number of cache misses or the num-
ber of memory accesses. Information about important performance metrics, like
false sharing, cache line invalidation, cache line replacement, and access pat-
tern, is missing. Therefore, it is not sufficient for a comprehensive analysis and
optimization.

Hence, it is necessary to use a novel approach capable of achieving accurate,
comprehensive performance data, and at the same time not introducing major
overhead or hardware complexity. For this, we have designed a cache monitor
and are currently working on the hardware implementation. This cache monitor
is a flexible device capable of observing the memory traffic on all levels of the
memory hierarchy and collecting detailed information about the cache access
behavior. It can be configured to a variety of working modes at the runtime
and provide different information needed for understanding the various access
patterns of applications and for the selection of appropriate optimization tech-
niques. In order to avoid delivering fine-grained, low-level performance data, a
multilayer software infrastructure has been developed for transforming the orig-
inal monitoring information into a high level abstraction with respect to data
structures. This includes both APIs for address transformation and interfaces
for convenient access of the performance information. In combination with the
software interface, the cache monitor provides, for example:

– Access histograms on individual location or the whole memory hierarchy.
They records the access distribution to the complete working set at granu-
larity of cache lines 1. This gives the user a global overview of the memory
accesses allowing an easy detection of access hotspots.

– Statistics on single events, like cache misses and total references to a specific
memory region or performed inside an individual iteration, loop, or function;
number of cache line replacements within an array; and number of first
references with respect to memory regions, arrays, or code regions. This
allows to find the source causing cache miss and inefficiency.

– Profile of access addresses. Based on this information, accesses at close in-
tervals can be grouped into the same cache line, thus reducing cache misses
caused by first references and also increasing spatial reuse of the cached data.

– Histogram of cache events which records the runtime actions of individual
cache sets in chronological orders. This allows to detect overmapping and
interference misses, helping to prohibit frequent replacement and reloading.

1 In order to reduce monitoring data, a coarse granularity can be specified for creating
histograms showing hotspot regions. These regions can then be monitored at cache
line granularity.

Comprehensive Cache Inspection with Hardware Monitors 333

– Additional information for multiprocessor systems, e.g. information about
false sharing and invalidation behavior. This helps to reduce the number of
cache line invalidations and thereby improve the cache efficiency.

The monitor concept has been verified using a simulation platform that mod-
els both uniprocessor architecture and multiprocessor systems with shared mem-
ory. Experimental results have shown the feasibility and effectiveness of this
hardware design.

The remainder of this paper is organized as follows. Section 2 introduces
common used approaches for acquiring cache performance data. This is followed
by a detailed description of this approach, the cache monitor, in Section 3. In
Section 4 some initial simulation-based experimental results are illustrated. The
paper concludes in Section 5 with a short summary and a few future directions.

2 Related Work

As locality tuning requires information about memory accesses, various ap-
proaches have been developed for collecting performance data with respect to the
memory system. These approaches can be roughly divided into three categories:
compiler-based, simulation-based, and hardware supported.

First, modern compilers trend to transparently optimize data locality during
the compiling time. They usually rely on heuristic analysis and mathematical
frameworks to understand the runtime access pattern. Ghosh et al. [4] present an
example in this area. Within this research work, a framework was developed that
automatically diagnoses the causes of cache misses in a compiler. This framework
is based on the Cache Miss Equations (CMEs), an analytical representation of
cache misses in a loop nest. Besides CMEs, a CME table is used to describe the
loop-level cache behavior and enable an automated diagnosis of the source of
cache misses. The diagnosis is then used to select program transformations that
improve cache performance.

For simulation based schemes, well-known examples are SIP [1] and MemSpy
[8]. SIP (Source Interdependence Profiler) is a profiling tool that uses SimICS
[7], a full-system simulator, to run the applications for collecting cache behavior
data. It then analyzes the acquired data and provides detailed information about
cache usage, such as spatial and temporal use of floating point and integer loads
and stores, cache miss ratios with respect to data structures, and a summary of
the complete statement. MemSpy is a performance monitoring tool designed for
helping programmers to discern memory bottlenecks. It uses cache simulation to
gather detailed memory statistics and then shows frequency and reason of cache
misses.

On the area of hardware, modern processors provide performance counters for
recording important information about the runtime execution. The UltraSPARC
IIi Architecture [10] provides two registers to count up to 20 events like cache
misses, cache stall cycles, floating-point operations, branch mispredictions, and
CPU cycles. The IBM POWER2 [12] has 5 performance counters enabling the

334 J. Tao et al.

concurrent monitoring of five events, such as the number of executed instructions,
elapsed cycles, counts and delays associated with cache and TLB misses, and
utilization of the various execution elements. Intel’s Itanium Architecture [5]
offers 8 and Pentium4 [6] even 18 performance counters to allow the collection
of more information, like that about specific instructions and pipeline conflict.

Overall, the compiler-based approaches can analyze the cache access behav-
ior, but can not observe the runtime dynamic access pattern. The simulation
based approaches compensate for this, however, introduce significant overhead
with respect to profiling and are also not generally available. For hardware coun-
ters, only limited performance data about the memory system can be achieved
and details are missing; programmers often have to do hard work in analyzing
the applications in order to understand the code and the data structure. We
therefore design a cache monitor in order to provide the programmers with de-
tailed, understandable, and easy-to-use performance data, and at the same time
hold the hardware properties such as enabling on-line processing with only probe
intrusion.

3 The Cache Monitor

The goal of this hardware monitor is to deliver comprehensive cache performance
data that not only shows the various aspects of cache access behavior but also
is easy to use, e.g. in the form of statistics and at high-level in terms of data
structures. We achieve these features with both flexible hardware design and a
multi-layer software infrastructure.

3.1 Hardware Design

The hardware monitor, as shown in Figure 1, consists of four modules: monitor
control, bus interface, counter module, and the memory transfer buffer. The
monitor control is the user interface of the monitor. The bus interface is the
connection to a bus system and responsible for acquiring data about bus traffic.
The data is then handed on to the counter module, which is responsible for
keeping track of those events that relate to the parameters defined by the user.
The data can then be transferred to a user-defined ring buffer in main memory
(Data-Buffer) through the memory transfer buffer. The memory transfer buffer
forms bundles of several event data and enables e.g. the utilization of memory
burst write accesses to reduce monitoring influence on observed systems.

Monitor Control Component (MCC). Figure 2 shows the structure of the
Monitor Control Component. For monitor configuration four registers are de-
ployed. Two of them are used for communication with the monitor, while the
others are related with the user-defined ring buffer in the main memory.

The first register defines a time stamp and some control and configuration
parameters. Time Stamp is a simple counter incremented when a monitoring
event is written to the memory transfer buffer. It can be used for event ordering.
Control parameters are used to reset, start, flush, and suspend the monitoring.

Comprehensive Cache Inspection with Hardware Monitors 335

The last parameter, the configuration bits, contains both specifications for en-
abling/disabling individual cache levels (up to 5) and for activating the dynamic
working mode of the hardware monitor.

The second register defines a few bits reflecting the states of the MESI pro-
tocol. This is an extension for monitoring cache behavior with regard to cache
line states and can be used to understand the cache coherence protocols.

The last two registers, RegionStartPtr & RegionEndPtr, specify two inde-
pendent address regions of interest. Accesses out of these regions will be ignored
by the event filter. By a null value, the whole address space is monitored.

As can be seen in Figure 2, these registers are organized in rows and columns.
To achieve greater flexibility, an additional bit field, called level, is introduced.
This allows to couple more than one counter module to a single monitor control
component.

Fig. 1. The cache monitor on the top level

Main Memory Ring Buffer. In order to observe all memory accesses with
limited registers, a ring buffer is maintained in the main memory for monitoring
data delivered from the hardware. Two registers in the MCC, BufferStartPtr and
BufferEndPtr, serve as pointers of the ring buffer. Each time a monitoring data
is written to the ring buffer, the BufferStartPtr is incremented. If BufferStartPtr
is equal to BufferEndPtr, an interrupt is created and delivered to the software
layer for clearing the ring buffer for further use.

Counter Module and the Two Working Modes. The cache monitor can
be configured to one of two working modes: static and dynamic. The former only
triggers predefined events and can be used to monitor specific memory regions.
The latter implements a histogram-driven monitoring, in which the counting is
not controlled by events, but rather all events can be traced. This mode can
hence be used for generating complete access histograms.

336 J. Tao et al.

Fig. 2. The Monitor Control Component

Correspondingly, the counter module consists of two groups of counters, each
for a single working mode. If the static mode is selected, the static counter array
(SCA) is active. Otherwise the dynamic counter array (DCA) is chosen.

The static mode is event-based sampling, where users define events and the
monitor counts the occurrence of these events. An event is actually a group of
memory accesses performed on a specific memory region. It is defined with an
address range and a transaction type. By each memory access the hardware
monitor compares both the access address and type with the predefined events.
In case of a matching, the memory access is stored as an event in SCA.

Fig. 3. Static (left) and dynamic (right) counter array

Figure 3 (left) illustrates the structure of the static counter array. It is com-
prised of several registers, again organized in the form of rows and columns.
While rows 0-7 are reserved for user-defined settings, the others are used to

Comprehensive Cache Inspection with Hardware Monitors 337

store information about the monitored events. These registers can be configured
using the following parameters:

– DataAddr: start address of the monitored event.
– InstrAddr: start address of an optional instruction region that issues the

event.
– DataWidth (DW): width of the event-related data region.
– InstrWidth (IW): width of the instruction region.
– Threshold (Thres): optional threshold for restricting the maximal count of

the corresponding event.
– Cfg: configuration flags, where InstrMode for activating instruction region

observation, Start for activating the corresponding counter, ReadWrite for
specifying access type, and MissHit for selecting miss/hit events.

– Counter: the event counter.

Figure 3 (right) also illustrates the organization of the dynamic counter array.
As shown in the bottom of this figure, each counter (from Row 8) can be used
to store information concerning a single event, including instruction address
(InstrAddr), access address (Addr), and the counting to the event. In addition,
an MSI (Mode Specific Information) field is combined with each counter for
submodes to store additional information.

As mentioned, the dynamic mode supports submodes in order to enable vari-
ous functions and allow the generation of different monitoring data. For example,
submode0 observes all data accesses performed at runtime. In order to sort and
categorize various events, it uses MSI to store the time stamp and transaction
type for each event. Besides this submode, the dynamic monitoring supports an-
other three submodes, where submode1 enables the observation of instructions
and instruction groups in relation to their memory access behavior, submode2
traces the instruction addresses of applications, and submode3 counts cache hits
on individual cache lines between two single invalidations and is specially de-
signed for improving cache coherence protocols. Overall, each submode aims
at creating different monitoring data for various need with respect to locality
optimization.

In addition, the monitoring concept provides a dynamic granularity control,
where the tracing unit can be configured. This allows to monitor single words
for e.g. detecting false sharing and also enables the aggregation of neighboring
events in case of access histograms where fine granularity is not required. For this
granularity control the counter 0 in the dynamic counter array provides a field
“Granularity” to store a user–definable parameter that specifies the maximal
range of addresses which are allowed to be combined. In addition, counter 0 also
defines granularity for optional address observation (AddrGran) and for masking
single instructions or whole instruction groups (InstrMask).

3.2 Software Infrastructure

The monitoring data directly delivered by the cache monitor is low-level, fine-
grained, and based on physical addresses. It can hence not be provided to users

338 J. Tao et al.

who need high-level abstractions to reason about cache misses and to understand
the access pattern of applications. For this, a software infrastructure has been
designed.

As illustrated in Figure 4, the software infrastructure contains several layers,
each processing a step further of the monitoring information. As mentioned,
the original monitoring data is stored in the ring buffer in main memory. From
there, the data is first processed by the low level API of the hardware monitor.
Within this step, data is sorted and then a histogram chain is generated that
stores the monitoring data in the order of memory blocks in cache line size, so
called memory lines. In addition, the low level monitor API also combines the
monitoring data from different monitors and probably different processors, and
translates physical addresses to virtual ones.

Processor 0 Processor 1 Processor n

Monitors 0 Monitors 1 Monitors n......
......

Hardware

Software

ePAPI

Message Request Interface (MRI)

Applications

Automated Performance Optimizer

...

Lo
w

−l
ev

el
 m

on
ito

r A
PI

Ring buffers

Histogram chain

Fig. 4. Software framework for data processing

On top of the monitor API, the ePAPI library further processes the monitor-
ing data into statistical forms such as total number of single events and access
histograms. Finally, the Monitoring Request Interface (MRI) maps the virtual
addresses into data structures using the context table provided by some com-
pilers or using the debugging information. Also from this component, the final
high-level data abstraction is delivered to performance tools and applications for
performance analysis.

As the primary data processing component, ePAPI provides a set of func-
tions not only for data processing but also for configuration of the monitoring
hardware. Similar to the PAPI [2] library for hardware counters, ePAPI is ca-
pable of generating statistical numbers on individual events like cache hits and

Comprehensive Cache Inspection with Hardware Monitors 339

misses. Besides this, ePAPI generates access histograms recording the occur-
rence of single events over the complete working set. These histograms can be
used to find critical regions where individual metrics, like cache locality, show a
poor performance. In addition, ePAPI provides functions for analyzing the access
addresses and invalidation operations. These functions can be used to provide
address groups and to create invalidation sequences, which are needed in address
grouping and false sharing detection.

As an information request interface, the main function of MRI is to allow tools
and applications to specify runtime requests that hold definitions of the required
information, like information type, source code region, and the concerned data
structure. The runtime information type can be individual events and access
histograms in combination with program regions. Typical program regions are
program units, loops, parallel regions, and function call sites. According to the
requests, MRI calls appropriate ePAPI functions and delivers information to the
consumer in a push and pull fashion.

4 Verification of the Hardware Design and Functionality

In order to evaluate the hardware concept, the cache monitor has been sim-
ulated with a monitor simulator. This component closely models the hardware
details and the working principles. The monitor simulator is then combined with
an existing multiprocessor simulator SIMT [11], which simulates the execution
of serial and parallel applications on SMP/NUMA architectures and generates
events like cache hits/misses, replacements, and cache line invalidations.

The applications used for the following experiments are from the SPLASH-II
Benchmarks suite [13]. This includes a Fast Fourier Transformation (FFT), an
LU-decomposition for dense matrices (LU), an integer radix sort (RADIX), the
OCEAN code for simulation of large scale ocean movements, and the WATER
code for evaluating water molecule systems. We use these applications to deter-
mine hardware parameters like the number of registers in the counter arrays, and
to verify the feasibility of the cache monitor in terms of providing performance
data. All applications were simulated using their default working set size.

Events Interval. An important design issue with a cache monitor is to know
how fast it has to process an event or how many registers have to be provided
as store buffer, in order to guarantee that no event is missing, especially for
the histogram-driven dynamic working mode. This parameter depends on the
frequency of events issued at the runtime. Using the simulation platform we
have measured the interval between two events. Figure 5 shows the results.

We divided the events into four groups: those with intervals less than 5 CPU
cycles, intervals between 5 and 9 cycles, intervals between 10 and 14 cycles,
and intervals greater than 14 cycles. We first measured the number of events
within each group and then computed the percentage. As shown in Figure 5,
for all applications 20–30% of the total events lie in the third group, i.e. with
intervals between 10 and 14 CPU cycles. This indicates that the cache monitor
can probably directly process these events without buffering. However, it can

Comprehensive Cache Inspection with Hardware Monitors 341

Fig. 6. Flushes of the dynamic counter array with different number of registers

Fig. 7. Combined memory access histogram of WATER

Figure 7 illustrates a sample histogram with WATER, which shows the com-
bined data for all monitors on a memory hierarchy with two level caches. The
x-axis of this figure presents the first 100 memory lines of the complete working
set and the y-axis presents the number of accesses performed on each memory
line. These accesses can be either an L1 hit, an L2 hit, or have to be performed
in the main memory. As can be seen, most memory references can be found in
the caches, however, for this concrete example there also exists memory regions
with a high access rate of the main memory.

In summary, the access histogram enables a direct observation of distinct
memory access behaviors within a single code. This allows to find access hot
spots, forming the first step towards cache optimization.

Comprehensive Cache Inspection with Hardware Monitors 343

Figure 8 shows the memory access distribution of the complete matrix before
(left diagram) and after (right diagram) optimizations. For a better observation
of the different behavior with the cache and the memory, the second level cache
is disabled within this experiment. Both diagrams in the figure show the absolute
number of access hits on both L1 and the main memory, with the L1 hits on
the bottom and the memory hits on the top. It can be clearly seen that less
references are performed on the main memory for the optimized version. This
again proves the feasibility of the cache monitor, since it directs the users to the
correct point where optimizations are needed.

False Sharing. For shared memory multiprocessor systems, cache line invalida-
tion is a critical issue causing cache misses. Such invalidations, however, could
be unnecessary. A specific case is false sharing, where a cache line on a processor
is invalidated because another processor has modified a word of the same data
copy, but the processor needs a different word within the cache block. In this
case, the cache line has not to be invalidated.

For supporting the optimization with respect to false sharing, the cache mon-
itor provides event profile that records the histogram of memory operations in a
serial order. This allows its API to compare the target of a shared write with all
following shared reads thus to detect false sharing. Table 1 shows the statistics
reported by the cache monitor API. This result was acquired by simulating all
applications on a 32-node multiprocessor system.

We have measured the number of false sharing for four different cache co-
herence protocols. MESI is a common used scheme for hardware-based shared
memory machines. This scheme performs cache line invalidation by each write
operation to shared data. FULL is a kind of release consistency model usually de-
ployed on systems with distributed shared memory. This scheme performs whole
cache invalidation at each synchronization event like lock and barrier. OPT is
an optimal scheme that invalidates a cache line by a read operation and only
when the accessed cache line has been modified. SCOPE is an optimized version
of FULL, where only the cache lines holding remote data are invalidated rather
than the complete cache. In principle, OPT should performs better than MESI,
MESI better than FULL, and SCOPE better than FULL.

Table 1 depicts the absolute number of total invalidations and false sharing of
them. It can be observed that applications vary in this behavior. For FFT, 40%
of the invalidations with MESI are false sharing, 50% with OPT, and even 78%
with SCOPE. For the FULL scheme, it is senseless to compute this proportion
because most validations are performed on invalid cache lines. However, more
false sharing can be observed with this protocol. LU performs better than FFT
with a slight percentage of false sharing, e.g. 3% with MESI. RADIX reports the
highest false sharing (65% with MESI) and the other two applications perform
better than RADIX and FFT.

Overall, the experimental results indicate that for most applications opti-
mization with false sharing is necessary in order to alleviate cache misses. For
this the cache monitor provides required data for analysis.

344 J. Tao et al.

5 Conclusions

This paper introduces the design and working principles of a hardware monitor
for observing the access behavior of caches. This monitor is comprised of control
registers and counter arrays for hardware configurations and monitoring data. It
can be configured into a static mode for event triggering and action processing on
special memory regions of interest, and a dynamic mode for providing fine-grain
monitoring statistics across the complete application’s working set. In addition,
the cache monitor is capable of supplying different performance data allowing the
adaptation to various cache optimization techniques. The design of the hardware
monitor has been evaluated using simulation and the results have shown the
feasibility and effectiveness of the monitoring approach.

In the next step of this research work, the hardware will be implemented
using FPGAs. In addition, performance tools will be developed for supporting
the locality optimization. This includes a visualizer that shows the cache be-
havior in graphical views and an automatic optimizer that improves the cache
performance transparently at runtime. The latter forms a base for building au-
tonomous systems.

References

1. E. Berg and E. Hagersten. SIP: Performance Tuning through Source Code Inter-
dependence. In Proceedings of the 8th International Euro-Par Conference, pages
177–186, August 2002.

2. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable program-
ming interface for performance evaluation on modern processors. The International
Journal of High Performance Computing Applications, 14(3):189–204, Fall 2000.

3. Digital Equipment Cooperation. Alpha 21164 Microprocessor Hardware Reference
Manual. Technical report, 1995.

4. S. Ghosh, M. Martonosi, and S. Malik. Automated Cache Optimizations using
CME Driven Diagnosis. In Proceedings of the 2000 International Conference on
Supercomputing, pages 316–326, 2000.

5. Intel Corporation. Intel Itanium Architecture Software Developer’s Manual, volume
1–3. 2002. available at http://developer.intel.com/design/itanium/manuals/
iiasdmanual.htm.

6. Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual, volume
1–3. 2004. available at Intel’s developer website.

7. P. S. Magnusson and B. Werner. Efficient Memory Simulation in SimICS. In
Proceedings of the 8th Annual Simulation Symposium, Phoenix, Arizona, USA,
April 1995.

8. M. Martonosi, A. Gupta, and T. Anderson. Tuning Memory Performance of Se-
quential and Parallel Programs. Computer, 28(4):32–40, April 1995.

9. M. Martonosi, A. Gupta, and T. E. Anderson. Tuning Memory Performance in
Sequential and Parallel Programs. IEEE Computer, pages 32–40, April 1995.

10. Sun Microsystems. UltraSPARC IIi User’s Manual. October 1997. available at
http://www.sun.com/processors/documentation.html.

Comprehensive Cache Inspection with Hardware Monitors 345

11. J. Tao, M. Schulz, and W. Karl. A Simulation Tool for Evaluating Shared Memory
Systems. In Proceedings of the 36th Annual Simulation Symposium, pages 335–342,
Orlando, Florida, April 2003.

12. E. Welbon and et al. The POWER2 Performance Monitor. IBM Journal of Re-
search and Development, 38(5), 1994.

13. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture, pages 24–36,
June 1995.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 346 – 354, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Fast Technique for Constructing Evolutionary Tree
with the Application of Compact Sets*

Kun-Ming Yu1,**, Yu-Weir Chang1, YaoHua Yang2, Jiayi Zhou1, Chun-Yuan Lin3,†,
and Chuan Yi Tang4

1 Department of Computer Science and Information Engineering, Chung Hua University
2 Department of Information Management, Chung Hua University

3 Institute of Molecular and Cellular Biology, National Tsing Hua University
4 Department of Computer Science, National Tsing Hua University

Hsinchu, Taiwan 300, R.O.C.
yu@chu.edu.tw

Abstract. Constructing an evolutionary tree has many techniques, and usually
biologists use distance matrix on this activity. The evolutionary tree can assist
in taxonomy for biologists to analyze the phylogeny. In this paper, we specifi-
cally employ the compact sets to convert the original matrix into several small
matrices for constructing evolutionary tree in parallel. By the properties of
compact sets, we do not spend much time and do keep the correct relations
among species. Besides, we adopt both Human Mitochondrial DNAs and ran-
domly generated matrix as input data in the experiments. In comparison with
conventional technique, the experimental results show that utilizing compact
sets can definitely construct the evolutionary tree in a reasonable time.
Keywords: computational biology, evolutionary tree, compact sets, branch-and-
bound.

1 Introduction1

An evolutionary tree is a model of evolutional histories for a set of species. It is an
important and fundamental model in bioinformatical field to observe livening species.
A meaning evolutionary tree enhances biologists to evaluate the relationship of a set
of species in taxonomy. Hence, many methods have been proposed to construct the
evolutionary tree.

The majority of these methods are all based on two models, i.e., the sequences and
a distance matrix. In the sequences model, they do multiple sequence alignment
(MSA) for a set of species with corresponding DNA sequence first. Then an evolu-
tionary tree is constructed according to the MSA result. However, the MSA problem
is NP-hard. In a distance matrix model, they determine the distance as the edit dis-
tance for any two of species first. Then these distances are formed as a distance ma-
trix. Finally, an evolutionary tree is constructed according to a distance matrix. Unfor-

* This work was supported in part by the NSC of ROC, under grant NSC93-2213-E-216-037.
** Corresponding author.
† Post doctor fellowship is supported by NSC under contract NSC92-3112-B-007-002 and

NSC93-3112-B-007-008.

 A Fast Technique for Constructing Evolutionary Tree

347

tunately, it is also an NP-hard problem to construct a minimum cost evolutionary tree
from a distance matrix.

A category of evolutionary tree called ultrametric tree (UT) assumes that the rate of
evolution is constant. An UT is a rooted and edge weighted binary tree in which every
internal node has the same path length to all the leaves in its sub tree. The minimum
UT for a distance matrix is an UT that the distance between any pair of leaves on the
tree is no less than the given distance and the total weight on the tree edges is mini-
mized.

In the distance matrix, shown in figure 1, each value represents the distance be-
tween two species. The distance matrix D is symmetric, i.e. for all 0 ≤ i ≤ n, D[i,i] =
0. Also, the matrix D follows the triangle inequality, i.e. for all 1 ≤ i, j, k ≤ n, D[i,j]
+ D[j,k] ≥ D[i,k].

V 1

V 1

V 2

V 2

V 3

V 3 V 4

V 4

V 5

V 5

V 6

V 6

0 3 1 1 2 6 1 3
0 7 9 5 1 6

0 1 1 4 1 5
0 1 4 2

0 8
0

Fig. 1. An example of distance matrix

Some studies on constructing optimal evolutionary tree have been proven to be an
NP-hard problem [3, 4, 6, 8, 9, 15]. The scientists could use the branch-and-bound
technique to construct optimal evolutionary tree in a reasonable time [12] when the
number of species is small. Although the branch-and-bound algorithm would detect
an optimal solution, such capacities cannot effectively support the optimal evolution-
ary tree construction when the number of species exceeds 26.
 In this paper, we specifically utilize the compact sets to convert the distance matrix
into several small matrices for constructing an UT in parallel. We can not only obtain
nearly optimal evolutionary tree but also keep the precise relations among species
through compact sets by the property - the least common ancestor [14]. Of such an
advantage, our work might contribute to the findings on the phylogeny.

The rest of the paper is organized as follows: section 2 proposes some preliminar-
ies. Section 3 describes the methods for constructing the ultrametric tree in detail. The
experimental results are presented in section 4. Finally, the conclusion is placed in
section 5.

2 Preliminaries

An ultrametric tree is a rooted, leaf labeled binary tree, and each edge associates with
a distance cost. The length from root to any leaf is equal. We can construct an UT
through a distance matrix D representing a complete, weighted and undirected graph
G. The graph G = (V, E) includes vertices V and edges E. We give some definitions
below:

K.-M. Yu et al.

348

Definition 1. Assume that P is a given topology and i, j∈L(P). LCA(i,j) represents
the lowest common ancestor of i and j. Assume a and b are two vertices in P, we de-
note a → b if and only if a is an ancestor of b.

Definition 2. Assume P is a tree topology. R(P) is a relation - {(i,j,k}|a,b,c∈ L(P),
LCA(i,k)=LCA(j,k) → LCA(i,j)}.

The compact set has been extensively studied [5] but have not been applied to the
evolutionary tree construction problem. We will list some properties of compact sets
below:

Lemma 1: Assume compact sets exist in a tree T including elements i, j and k. The
compact sets must satisfy a relation least common ancestor. If and only if the rela-
tions ((i, j), k) and LCA(i, j) < LCA(i, k) = LCA(j, k) exist, then there is an adjacency
relation in T like figure 2.

Lemma 2: Let C be a subset of vertices V. If C is compact, then the maximum edge
in C should be smaller than any edges between an element in C and that in V but not
in C.

Lemma 3: Let A and B be two different compact sets of V1. If A and B have intersec-
tion, then either A ⊂ B or B ⊂ A[5].

Lemma 4: If sub graph g is compact set, then the sub tree in g also belongs to the

minimum spanning treeT .

i j k

Fig. 2. An example of least common ancestor

3 Proposed Solutions

To construct nearly optimal UT for mass spices in reasonable time, we utilize the idea
of compact set in our work. Firstly, we will find the compact sets from distance ma-
trix D and explore them to create several small distance matrices D’. Then we input
the smaller distance matrices D’ to parallel branch-and-bound algorithm. Finally we
can obtain sub trees T’ and merge them into an ultrametric tree T. We describe the de-
tails in the subsection.

3.1 Compact Sets

As above, we explore compact sets to separate the distance matrix D into several
small distance matrices D’. If the elements in a subset S of X are closer than those out-
side S but in X, then S is a compact set. Also we could continuously find compact sets
in S until exploring all sub sets. In this work we can find all the compact sets to clas-
sify the organisms by collecting the more relative species on the graph[17]. The found

 A Fast Technique for Constructing Evolutionary Tree

349

found groups will keep the correct relations and could conduce to analyze the phylog-
eny. Thus we utilize compact sets to construct a more precise ultrametric tree.

Initially we must find the minimum cost spanning tree to converge the closest
groups and can probe the elements inside each group to discover all the compact sets.
Take the figure 3 for example; if using the Kruskal’s algorithm, we can locate a

minimum spanning tree T like figure 4, and the compact sets are
{(1,3),(4,6),(1,2,3,5)}. We will continue using the algorithm below to verify the sub-

sets in T to discover all the compact sets.

1

2

3

4

5

6

1

2

3
4

5
6

7
8

9 1 1
1 3

1 4

1 5 1 6
1 2

1

2

3

4

5

6

1

2

3 4

8

Fig. 3. The complete, weighted, undirected graph Fig. 4. The minimum spanning tree

Algorithm Compact Sets
Input: A graph G = (V, E) with the vertex set V ={V1,
 V2, …, Vn} and edge set E. Each edge has a weight.
Output: All of the compact sets on the graph G.

Step 1. Find the minimum spanning tree T on the graph
 G.) //here we use Kruskal’s algorithm.

Step 2. Sort the edges in T in ascending order, which is
 marked as (e1, e2, …, en-1).
Step 3. P ← {{V1}, {V2,…,Vn}.
Step 4. for i := 1 to n-2
 {
 1. Let a and b to be the end vertices of edge
 ei, i.e., ei = (a, b).
 2. Find A, B in P such that a belongs to A and b
 belongs to B
 3. A ← merge A and B
 4. Delete B from P
 5. Find the maximum edge in A, denoted Max(A).
 6. Find the minimum edge between a vertex in A
 and a vertex not in A, denoted Min(A, !A).
 7. If Max(A) < Min(A, !A), then A is a compact
 set.
}

According to the algorithm, the order of edges is (1, 3), (4, 6), (1, 2), (3, 5) and (5, 6)

after sorting by the weights. The population P includes all the vertices in T , i.e. P =
{(1), (2), (3), (4), (5), (6)}. We will firstly merge (1) and (3) together while coming to
step 4. After the mergence, the P becomes {(1, 3), (2), (4), (5), (6)}. Continuously, we
will find compact sets, (1, 3) and (4, 6). Worthy to be noticed is when we merge (1, 2)
with (1, 3), we must examine if (1, 2, 3) satisfies the lemma 2. The maximum distance

K.-M. Yu et al.

350

in (1, 2, 3) is less than the minimum distance between vertices in (1, 2, 3) and (4, 5,
6). Thus, (1, 2, 3) is a compact set. In the end, all the compact sets are (1, 3), (4, 6),
(1, 2, 3) and (1, 2, 3, 5) like figure 5.

1

2

3

4

5

6

C 1

C 2

C 3
C 4

Fig. 5. Compact sets for the example

We then create several small distance matrices D’ of three types which differ in the
distance lengths stored in D’. These three matrices separately called maximum, mini-
mum, and average. In this paper, we only study the ultrametric tree constructed from
maximum matrix. The construction procedure is as follows. While creating the maxi-
mum matrix of C4, we will examine the distances between elements in C4, i.e. (C1, C3,
5). When considering C3 and (5), we must select the maximum distance, which is 6,
between (5) and any element in C3, i.e. (1), (3) or (2). The resulted maximum matrix
of C4 shows in figure 7.

We shall discuss a situation that if there more than oneT exists. In the previous

step when findingT , we need to examine and will obtain another T while replacing

the edge of T with that holding the same weight on the graph. Indeed the new

T should satisfy all conditions after the replacement. Figure 7(a) and (b) provides an

example that twoT s coexist in a graph.

C 1 C 2

C 1

C 2

5

5

0 7 6
0 6

0

M a x i m u m

1

2
3

4

51

2

3

4

4

1

2
3

4

51

2

3

4

4

(a) (b)

Fig. 6. Maximum matrix of C4 Fig. 7. Two minimum spanning trees in a graph

We can keep the precise relations among species by discovering all the compact
sets on the graph. Thus we could ensure the relationship of every species in the ul-
trametric tree is precisely preserved by the characteristics of compact set. Then we
can use the parallel branch-and-bound technique to construct an ultrametric tree from
the small matrices D’. The following is an introduction to parallel branch-and-bound
technique.

3.2 Parallel Branch-and-Bound Algorithm

We input several small distance matrices D’ to the parallel branch-and-bound algo-
rithm to find sub trees T’. Branch-and-bound algorithm is an efficient tree search

 A Fast Technique for Constructing Evolutionary Tree

351

algorithm for NP-hard problems. Some results about ultrametric trees have been pro-
posed in [2]. In the previous researches, Wu et al., [19] had proposed a sequential
branch-and-bound algorithm to construct minimum ultrametric trees from distance
matrices.

For the parallel branch-and-bound algorithm, we utilize a heuristic algorithm
UPGMM (Unweighted Pair Group Method with Maximum), which is altered from al-
gorithm UPGMA [15], to find the cost values as bound values in our algorithm. If any
computing nodes are notified that the branching unable to create any better solution,
we then remove the branch. Compared with the single processor system, the solution
space in the multi-processor system will decrease greatly. Thus, the parallel branch-
and-bound algorithm could achieve super-leaner speedup.

The parallel branch-and-bound algorithm in the master and slave paradigm is listed
as follows.

Parallel Branch-and-Bound Algorithm
Input: An n * n distance matrix D.
Output: The minimum ultrametric tree for D.
Step 1: Master control node re-label the species such
 that (1, 2, …, n) is a maxmin permutation.
Step 2: Master control node creates the root of the BBT
 (branch-and-bound Tree).
Step 3: Master control node run UPGMM and using the
 result as the initial UB (upper bound).
Step 4: Master control node branches the BBT until the
 branched BBT reach 2 times of total nodes in
 the computing environment.
Step 5: Master control node broadcasts the global UB
 and send the sorted matrix the nodes cycli-
cally.
Step 6: while number of UTs in LP (Local Pools) > 0 or
 number of UTs in GP (Global Pools) > 0 do
 if number of UTs in LP = 0 then
 if number of UTs in GP <> 0 then
 receive UTs from GP
 end if
 end if
 v = get the tree for branch using DFS
 if LB(v) > UB then
 continue
 end if
 insert next species to v and branch it
 if v branched completed then
 if LB (v) < UB then
 update the GUB (Global Upper Bound) to
 every nodes
 add the v to results set
 end if
 end if
 if number of UTs in GP = 0 then
 send the last UT in sorted LP to GP
 end if
 end while
Step 7: Gather all solutions from each node and output.

K.-M. Yu et al.

352

When obtaining the sub tree T’ from the small matrix D’, each node will return it
to the master control node. Finally, the master control node will merge all the sub
trees T’ into the ultrametric tree T.

4 The Experimental Results

The experimental environment is built by a Linux-based cluster incorporating one
master control node and 16 computational nodes. Computational nodes have the same
hardware specification and connect with each other at 100Mbps and 1Gbs to server.
Human Mitochondrial DNAs and randomly generated species matrix are the data in-
stances stored in the distance matrix. The experiments will process in two conditions:
To construct ultrametric tree (1) with application of compact sets and (2) without util-
izing compact sets. We will compare the differences in computing time and total tree
cost. We can find compact sets on a graph and determine the maximum distances of
elements in each compact set as the total tree cost while considering the ultrametric
tree based on maximum matrix. The following experimental results of compact sets
are shown based on the data of maximum matrix.

Time

0.1

1

10

100

1000

10000

20 25 26 28

species

(sec)

compact set
original

Cost

800
900

1000
1100
1200
1300
1400
1500

1 3 5 7 9 11 13 15 17 19 21
distance matrix

(cost)

compact set

original

Fig. 8. The computing time for random Fig. 9. The total tree cost for random data
data set set

As the experiments on the randomly generated sequences, the averages computing
time is shown in figure 8. Figure 8 illustrates the more species the more computing
time we spend. In comparison with the method without applying compact set, the
most time we save is about 99.7% and the least is 77.19% while using compact sets.
Also we present the differences in cost between condition 1 and 2 in figure 9 and the
results are based on randomly generated sequences. Figure 9 illustrates the total tree
costs under two conditions are almost equal and the difference is less than 5%.

As the experiments on Human Mitochondrial DNAs, we use 15 data set containing
26 species for each and the total tree cost is presented in figure 10. The results show
the maximum difference is 1.5%. In other words, the results demonstrate compact sets
have the same effect not only on generated sequences but also on Human Mitochon-
drial DNAs. Figure 11 shows the computing time. Using compact sets can definitely
save time but unexpectedly the experiments without compact sets also take little time
except the last data.

We also experiment with 30 DNAs and figure 12 represents the costs of 10 data set
each including 30 DNAs. As figure 12, using compact sets could keep the cost down
when we experiment on 30 DNAs as well as generated data or 26 DNAs. According

 A Fast Technique for Constructing Evolutionary Tree

353

to figure 13, for computing time, the performances of the experiments on both 26 and
30 DNAs are alike.

COST of 26 DNA species

500

600

700

800

1 3 5 7 9 11 13
distance matrix

(cost) compact set

original

TIME of 26 DNA species

0

20

40

60

80

1 2 3 4 5 6

distance matrix

(sec)

compact set

original

 Fig. 10. The total tree cost for 26 DNAs Fig. 11. The computing time for 26 DNAs

COST of 30 DNA species

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10
distance matrix

(cost) compact set

original

TIME of 30 DNA species

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9
distance matrix

(sec)

compact set

original

 Fig. 12. The total tree cost of 30 DNAs Fig. 13. The computing time of 30 DNAs

No matter how many species on which we experiment, the computing speed is still
extremely rapid without using compact sets. Although the experiments using compact
sets do not take much less time, we suppose the phenomenon is relevant to the popu-
lation of the data. The computing time resulted from the experiment with randomly
generated data can be a reference for any circumstance.

5 The Conclusions

In this paper, we employ the compact sets to convert the original matrix into several
small matrices for constructing ultrametric tree in parallel. Of the compact sets, the
precise phylogeny remains and facilitates biologists to analyze the species in taxon-
omy. Although we experiment with both Human Mitochondrial DNAs and randomly
generated sequences, the results from generated data can represent any real instance.
Therefore our technique could be applied in any condition.

References

1. H.J. Bandelt, “Recognition of tree metrics,” SIAM Journal on Discrete Mathematics, vol.
3, no. 1, pp.1-6, 1990.

2. E. Dahlhaus, “Fast parallel recognition of ultrametrics and tree metrics,” SIAM Journal on
Discrete Mathematics, vol. 6, no. 4, pp. 523-532, 1993.

3. W.H.E. Day, ”Computationally difficult parsimony problems in phylogenetic systemat-
ics,“ Journal of Theoretic Biology, vol. 103, pp. 429-438, 1983.

4. W.H.E. Day, “Computational complexity of inferring phylogenies from dissimilarity ma-
trices,” Bulletin of Mathematical Biology, vol. 49, no. 4, pp. 461-467, 1987.

K.-M. Yu et al.

354

5. E. Dekel, J. Hu, and W. Ouyang. An optimal algorithm for finding compact sets. Informa-
tion Processing Letters, 44:285-289, 1992.

6. M. Farach, S. Kannan, and T. Warnow, “A robust model for finding optimal evolutionary
trees,” Algorithmica, vol. 13, pp. 155-179, 1995.

7. W.M. Fitch, “A non-sequential method for constructing trees and hierarchical classifica-
tions,” Journal of Molecular Evolution, vol. 18, pp. 30-37, 1981.

8. L.R. Foulds, “Maximum savings in the Steiner problem in phylogency,” Journal of theo-
retic Biology, vol. 107, pp.471-474, 1984.

9. L.R. Foulds and R.L. Graham, “The Steiner problem in phylogeny is NP-complete,” Ad-
vances in Applied Mathematics, vol. 3, pp. 43-49, 1982.

10. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman: San Fransisco, 1979.

11. D. Gusfield, “Algorithms on Strings, Trees, and Sequences, computer science and compu-
tational biology,” Cambridge University Press, 1997.

12. M.D. Henry and D. Penny, ”Branch and bound algorithms to determine minimal evolu-
tionary trees,” Mathematical Biosciences, vol. 59, pp. 277-290, 1982.

13. R.M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer
Computations, R.E. Miller and J.W. Thatcher (Eds.), Plenum Press: New York, 1972, pp.
85-103.

14. SungKwon Kim, “A note on finding compact sets in graphs represented by an adjacency
list” Information Processing Letters, vol. 57, pp. 335-238, 1996.

15. M. Krivanek, “The complexity of ultrametric partitions on graphs,” Information Process-
ing Letter, vol. 27, no. 5, pp. 265-270, 1988.

16. W.H. Li and D.Graur, Fundamentals of Molecular Evolution, Sinauer Associates, 1991.
17. Chiou-Kuo Liang, "An O(n2) Algorithm for Finding the Compact Sets of a Graph," BIT,

vol. 33, pp 390-395, 1993.
18. N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phy-

logenetic trees. Molecular Biology and Evolution, 4:406-425, 1987.
19. B.Y. Wu, K.M. Chao, C.Y. Tang, “Approximation and Exact Algorithms for Constructing

minimum Ultrametric Tree from Distance Matrices,” Journal of Combinatorial Optimiza-
tion, vol. 3, pp.199-211, 1999.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 355 – 366, 2005.
© Springer-Verlag Berlin Heidelberg 2005

XenoCluster: A Grid Computing Approach to Finding
Ancient Evolutionary Genetic Anomalies

Jesse D. Walters2, 4, Thomas L. Casavant1, 2, 3, 4, John P. Robinson2, 4, Thomas B. Bair2,
Terry A. Braun1, 2, 3, 5, and Todd E. Scheetz1, 2, 3, 5

1 Center for Bioinformatics and Computational Biology, Iowa City, IA
http://genome.uiowa.edu

2 Coordinated Laboratory for Computational Genomics, Iowa City, IA
{jwalters, tomc, tbair, tabraun, tscheetz}@eng.uiowa.edu

john-robinson@uiowa.edu
http://genome.uiowa.edu/clcg.html

3 Department of Biomedical Engineering, Iowa City, IA
http://www.bme.engineering.uiowa.edu/

4 Department of Electrical and Computer Engineering, Iowa City, IA
http://www.ece.engineering.uiowa.edu/

5 Department of Ophthalmology and Visual Sciences, Iowa City, IA
http://webeye.ophth.uiowa.edu/

Abstract. This paper describes and evaluates a coarse-grained parallel
computational approach to identifying rare evolutionary events often referred to
as "horizontal gene transfers". Unlike classical genetic evolution, in which
variations in genes accumulate gradually within and among species, horizontal
transfer events result in a set of potentially important genes which "jump"
directly from the genetic material of one species to another. Such genes, known
as xenologs, appear as anomalies when phylogenetic trees are compared for
normal and xenologous genes from the same sets of species. However, this has
not been previously possible due to a lack of data and computational capacity.
With the availability of large numbers of computer clusters, as well as genomic
sequence from more than 2,000 species containing as many as 35,000 genes
each, and trillions of sequence nucleotides in all, the possibility exists to
examine "clusters" of genes using phylogenetic tree "similarity" as a distance
metric. The full version of this problem requires years of CPU time, yet only
makes modest IPC and memory demands; thus, it is an ideal candidate for a
grid computing approach. This paper describes such a solution and preliminary
benchmarking results that show a reduction in total execution time from
approximately two years to less than two weeks. Finally, we report on several
trade-off issues in various partitions of the problem across WAN nodes, and
LAN/WAN networks of tightly coupled computing clusters.

1 Introduction

The mass availability of trillions of nucleotides of genomic sequence from more than
2,000 species containing as many as 35,000 genes each, makes it possible to pose
biological and biomedical questions that just a few years ago would have been
inconceivable. However, without large-scale parallel computational power, it would
still be infeasible to practically address and answer these same questions. These two

356 J.D. Walters et al.

necessary elements have met in a number of fascinating settings within the genomics
and bioinformatics communities; this paper describes a grid-parallelizable [1]
algorithm and implementation called XenoCluster which addresses one such setting
known as horizontal gene transfer. In addition, general issues facing the use of
heterogeneous networks for such problems are addressed. The result of XenoCluster
will be to identify genes in a species which are candidate xenologs -- or genes that
were introduced into a species by horizontal gene transfer, rather than by random
mutation and natural selection. The underlying methods employed to detect xenologs
are proven methods, used by biologists on small sets of species and genes for decades.
This paper is reporting on a scaled implementation for benchmark purposes. The
ultimate goal of this work is to develop a robust, grid-deployed version to identify
xenolog candidates to be verified with traditional biological means. Our benchmark
results show that it is possible to efficiently harness more than 2,048 processors
organized in a heterogeneous grid of modest sized compute clusters to reduce the
overall computation time of a typical problem setting from more than 2 years to
roughly 12 days. Our work is continuing in the development of new parallel methods
to allow even more efficient implementation of XenoCluster on larger numbers of
processors, as well as a generic grid implementation using emerging grid computing
platforms such as BIRN [2], Globus [3], or other OGSA [4] platforms.

2 Background and Related Work

2.1 Biological Background

Typical genes are transferred through lineages, from one generation to the next within
a species. However, an alternate form of “inheritance” is possible in which genetic
material crosses species boundaries. This form of inheritance is termed horizontal
gene transfer. This may occur from a single gene transferred via a viral vector, or
through an endosymbiotic event resulting in the acquisition of an entire genome. Such
events are generally accepted theories throughout evolution (e.g., eukaryotic
acquisition of mitochondria via an endosymbiosis of blue-green algae). Thus the
ability to identify patterns of horizontal gene transfer can increase our understanding
of the evolution of species and the structure of the tree of life.

General features of horizontal gene transfer include higher inter-species sequence
similarity between two taxa (species) that are in different clades (branches) of the
consensus tree. To accomplish this, a broad set of species must be sampled. Ideally all
species for which gene sequence is available would be utilized. The limiting factors
are thus the availability of sequence for a large number of taxa, sampled across a
broad set of phyla, and the capability to harness sufficient computational power to
identify orthologous sequences, construct phylogenetic trees for each orthologous set
of genes, and then compare the trees derived from each orthologous set to identify
“non-consensus” inheritance patterns.

2.2 Computational Background

Several operations are necessary to identify horizontal gene transfers, or other
anomalous gene inheritance events. First, orthologous sequences must be identified.

 XenoCluster: A Grid Computing Approach to Finding Ancient EGA 357

Orthologs are the same gene in different species (e.g., hemoglobin alpha in human
and mouse). Next these sequences must be aligned, and phylogenetic trees created.
Finally, the tree structures are compared to identify atypical patterns of inheritance.

There are several computational methods for determining orthology. The most
commonly accepted method is based upon a strongly connected graph constructed of
nodes representing genes across species in which each element is more similar to the
others in the set than to genes from outside the set. In graph theoretical terms, this is
analogous to a strongly connected component. In practice, this definition may be
performed in an NxN comparison of all sequences to all other sequences or it may be
performed using a “root” species upon which all other comparisons are based. The
latter method is known as a Star multi-alignment, and is the only computationally
feasible method for moderate to large numbers of sequences.

Additionally, there are several previously generated set of orthologs publicly
available. These include COG (Clusters of Orthologous Groups), and KOG
(Eukaryotic Orthologous Groups) from NCBI [5], as well as OrthoMCL [6] from the
University of Pennsylvania and EGO Eukaryotic Gene Orthologs; [7] from TIGR.
The primary limitation on each of these data sets is the scope of sequences utilized in
the construction. OrthoMCL only includes the genes from 10 specific well-curated
species. The method described in this paper presents a more dynamic version that
incorporates sequences from all organisms available in the NCBI’s non-redundant
amino acid database (NR).

Phylogenetic analysis allows determination of the most likely pattern of inheritance
of a gene. In other words, it estimates the evolutionary relationship between the
species for which orthologous sequences of the same gene (or set of genes) are
available. Such analyses may be done with either nucleotide or amino acid sequences,
and yield a phylogenetic tree. Dendrograms are the most frequently used
representation of a phylogenetic tree. After a phylogenetic tree has been created, its
structure is evaluated through repeated construction of trees based upon randomly
reconstructing replicate data sets based upon the original data set. Programs such as
PHYLIP [8] and PAUP [9] are commonly used to construct phylogenetic trees, based
upon an aligned set of orthologous sequences. Both programs support multiple
construction methods, including distance-based construction as well as maximum
likelihood-based construction methods.

3 Approach and Methods

In this section, we present an outline of the computational methods needed to solve
this problem in general, and then discuss the way in which this solution may be
parallelized for a grid of clusters solution in heterogeneous-latency networks. The
algorithm is divided into 3 major phases:

1. Identification of a maximal set of orthologous genes.
2. Generation of phylogenetic trees resulting from orthologous groups.
3. Clustering of these trees into groups corresponding to genes which show

consistent evolutionary behavior.

In phase 1, it is necessary to identify potential homologous genes for every gene in
the union of a complex set of 1000s of species. This is accomplished by BLASTing

358 J.D. Walters et al.

[10] each gene against the set of all known genes in all species, and then performing a
reciprocal BLAST operation to verify that the best hit for each gene hits the original
gene with the highest rank score. This becomes the base set of orthologous gene
groups to be used in phase 2 among which xenologs may be identified. The second
phase involves the sequence trimming and multiple alignment of all members of each
of the orthologous gene groups, followed by the automated generation of a
phylogenetic tree for each aligned group. The final phase performs an all-pairs
distance analysis of phylogenetic trees for all gene groups, and then uses a clustering
technique to identify maximal sets of trees, which represent sets of genes which share
a common evolutionary history. This two-level clustering is illustrated by the tree of
trees figure shown in Figure 1.

Gene 1

Species A

Species C

Species B

Gene 2

Species A

Species B

Species C

Gene 3

Species B

Species A

Species C

Fig. 1. An illustration of the clustering of phylogenetic trees. The overall tree is partitioning
based on genes, and each tree at a leaf node represents a tree of species based on the genes in a
single orthologous group. Leaves that are “close” together are similar based on common
patterns of evolutionary descent

Relatively small clusters of genes (shown as trees grouped together as leaves of the
main tree) are likely to implicate xenologs, and would eventually need to be verified
by closer biological examination.

Important design details of the procedure outlined above are presented in the
following sections, and are illustrated summarily in Figure 2.

3.1 Orthologous Set Identification

Ortholog identification was performed using the COE (Computational Orthology
Engine) system, developed at the University of Iowa. COE identifies orthologous
sequence groups using a reciprocal best-alignment strategy. Each mRNA RefSeq [11]
sequence for a base species was BLASTed against NCBI’s non-redundant amino acid
database.

For each BLAST result, the top hit of each species was selected, if and only if it
met a stringent quality threshold criterion. The threshold criteria included

 XenoCluster: A Grid Computing Approach to Finding Ancient EGA 359

Fig. 2. A detailed flowchart of the XenoCluster approach

minimum length of matching region, alignment score and statistical significance (e-
value). If these criteria were not met, then a reciprocal BLAST was not performed and
ortholog investigation for the particular alignment was aborted.

If the threshold criterion was met, a reciprocal BLAST was performed with these
top species hits against the RefSeq database [11] to further support the orthology
inference. A reciprocal BLAST that did not yield the original RefSeq sequence as the
best BLAST hit, was discarded and not considered an ortholog. If the reciprocal
BLAST yielded the original RefSeq sequence as the best hit, then the reciprocal
BLAST sequence and species information was added to the orthologous group for the
current mRNA sequence.

Text parsing of the BLAST results was performed using custom Perl scripts with
the BioPerl [12] package. Batch scheduling of all BLAST operations in phase 1 was
performed using the Portable Batch System [13].

360 J.D. Walters et al.

3.2 Phylogentic Tree Construction

Once ortholog identification has been performed, the next phase is trimming,
alignment, and phylogenetic tree generation. First, sequences of each group must be
trimmed to contain only the subsequences showing high-quality local alignment. The
trimming of sequences is done using a custom Perl script. Multiple sequence
alignment is accomplished using the well-established clustalw software [14]. The
final step in this phase is the generation of the phylogenetic trees – one for each
orthologous group of genes identified in phase 1. Each gene and its corresponding
ortholog set form a tree. The PHYLIP [8] software suite was used to generate each of
the trees. Specifically, the seqboot, protdist, fitch and consense programs from the
PHYLIP 3.6 package were used. Seqboot was used to create 500 bootstrap replicates
for each set of orthologous genes. Both protdist and fitch were run with default
parameters, except that they analyzed the complete set of 500 replicates. These
programs generated the sequence distance matrices and the phylogenetic trees for
each of the bootstrap replicates. Finally, the consense program was run to obtain the
consensus phylogenetic tree based upon the bootstrap replicates.

3.3 Phylogenetic Tree Clustering

Finally, the phylogenetic tree clustering was performed from the results of the
PHYLIP software package. This involves two main sub-phases – distance matrix
generation, and clustering.

Inter-tree distance was calculated using a modified version of the TreeRank [15]
algorithm. Modifications included normalization of branch lengths and up-down
distances to reflect tree branch lengths as phylogenetic distances. In the published form,
this algorithm assumes unit length for all tree branches. The modified algorithm was
implemented in POSIX C with pthread support. Development of this software was done
on Fedora 9.0 and Redhat Enterprise machines. The second sub-phase involved
clustering, given a complete distance matrix from every tree to every other tree.

The second sub-phase involved clustering via the first sub-phase’s tree distance
matrix containing distances between every tree. A minimum similarity parameter was
used to specify the minimum tree to tree similarity allowed to add a tree to an existing
cluster. If a given tree met or exceeded any tree in a cluster, it was added to that
cluster and no further comparisons were performed for that tree. The tree clustering
system was implemented in POSIX C with pthread support. Development of this
software was done on Fedora 9.0 and Redhat Enterprise machines.

3.4 Grid/Cluster Implementation and Benchmarking Approach

Each of the phases described in detail above were implemented in a LINUX
environment (2.2GHz dual Athlon with 2GB RAM running either Fedora or Redhat
9.0), and benchmark executions were performed using the largest set of human genes
known at the time of publication. For this analysis, and all benchmarks, this consisted
of the set of all 20,364 known human RefSeq mRNA sequences. Runtime estimates
for the first phase of the computation, which involved the COE system, varied
significantly with system threshold parameters. The initial iteration of the system
yielded an average of 588 cpu seconds per RefSeq mRNA. Variations of the

 XenoCluster: A Grid Computing Approach to Finding Ancient EGA 361

aforementioned match length, alignment score and e-value thresholds can change the
number of reciprocal BLASTs performed and therefore the average runtime. Thus, the
values reported in Table 1 are an average taken across the entire set of 20,364 genes.
The average COE benchmark time per RefSeq gene also varied substantially with the
size of the mRNA nucleotide sequence, and the novelty of the RefSeq gene. For
example, a gene that was highly conserved across several species would have many
more reciprocal alignments to perform than a gene that only appears in the human
species. The COE results yielded an average of 12.6 orthologs per RefSeq mRNA.
More relevant to performance, a mean of 39 reciprocal BLASTs were performed for
each RefSeq mRNA. This meant that approximately 32% of the reciprocal alignments
were considered orthologs while the remaining 68% were not considered to be the
RefSeq mRNA’s true ortholog because a better hit was found to a different RefSeq.
An important trade-off for future investigation is the sensitivity and specificity of the
ortholog search versus execution time. Lowering the match criteria in the initial
BLAST phase will improve sensitivity, while requiring more work to be performed in
the reciprocal BLAST phase to address specificity.

Currently, work is underway which will allow phase 1 and phase 2 to be deployed
on a globus [3] administered grid. In addition to PBS, other cluster scheduling tools
hope to be deployed, such as Condor [16] and SGE [17] to provide users with a robust
job submission environment. With the ongoing development of the Open Grid
Services Architecture [4] and projects such as caGrid [18], additional modification
and portability development will be done to take advantage of future computer
resource architectures.

In the next section, we will discuss the effect of deployment of XenoCluster on a
large-scale grid of compute clusters. The average benchmark time of 588 seconds
could potentially be extrapolated to reveal the runtime of the entire dataset through
the COE system. To validate the accuracy of our predictive model, 20,364 mRNAs at
an average of 588 seconds would yield 3,326 cpu hours. A benchmark was then
performed on our 16-node Linux cluster (same nodes as reported above). The wall
clock time was shortened to 207 cluster hours. This was very close to the expected
time of approximately 12 days. Runtime of the PHYLIP software increased linearly
with the number of bootstrap iterations performed. Preliminary averages show a
runtime of 579 cpu seconds at 100 bootstrap iterations, while an average of 2,518 cpu
seconds was achieved at 500 bootstrap iterations. The tree clustering phase (UIPTC)
results were extrapolated to reveal the estimated runtime of the large 20,364 gene set.

Table 1 summarizes the detailed times (in wall-clock time units of seconds) of 5
computational and 2 communication elements of XenoCluster. The intra-cluster
communication overhead was approximated as the average time to transfer the NR
database between two Linux clusters via a 100 Mb connection. Similarly, the inter-
cluster communication cost overhead was calculated as the average time to transfer
the NR database between compute nodes in the same cluster over a 1 Gb connection.

Phase 1 as described in section 3.1 is represented by two benchmark elements –
Initial BLAST and Reciprocal BLAST respectively– because these two phases are
differently affected by parallelization. Similarly, the phylogenetic tree generation
phase described in section 3.2 is divided into a Sequence Alignment (including
trimming) and PHYLIP Tree Generation. Note that these four computational elements
parallelize cleanly across all genes, and in the case of reciprocal BLASTing, the

362 J.D. Walters et al.

degree of parallelization is increased to an average of 39x due to the fact that the
number of reciprocal BLASTs depends on the number of potential orthologs
identified in the Initial BLAST sub-phase. However, in the final phase, tree clustering
has not been parallelized effectively at the time of this manuscript preparation and
strategies for this phase are outlined in the conclusion of the paper. The pie-chart
illustrates the fact that the PHYLIP phase is the single most costly in terms of
execution, and thus was the first target of our parallelization strategy.

4 Results and Discussion

Based on the extensive measurements made in the benchmarking of the component
phases of XenoCluster reported above, and its parallelization on a 16-node cluster, we
have been able to predict performance in a grid computing environment of 1000s of
compute nodes. Key to understanding the potential impact of this parallelization is
two key parameters describing the grid – K: the number of clusters, and N: the
number of nodes in each cluster. Note, the number of total nodes in the grid is then
simply the product K*N. While not simulating the effect of varying sizes of clusters,

Table 1. Benchmark timings on 20,364 genes for the component phases of XenoCluster run
with 1 dual CPU node (cluster size 1). Timings taken on a 2.2GHz dual Athlon with 2GB RAM
running Fedora Redhat 9.0

Phase/component Time (Seconds) # of Iterations Total (Seconds)
Intra Cluster IPC 124 1 124
Inter Cluster IPC 311 1 311
Initial BLAST 301 20364 6129564
Reciprocal BLAST 12 794196 9530352
Sequence Alignment 33 20364 672012
PHYLIP tree generation 2518 20364 51276552
Tree Clustering 1036800 1 1036800

Total 1,040,099 855,291 68,645,715
CPU Efficiency 100.00%
Days to completion 794.5106

Wall-clock Time Breakdown N=1 K=1

9% 14%

1%

74%

2% Initial Blast
Reciprocal Blast
Sequence Alignment
PHYLIP
Tree Clustering

 XenoCluster: A Grid Computing Approach to Finding Ancient EGA 363

this analysis does shed meaningful light on the question of how heterogeneous
communication times within a grid environment affect the overall performance and
the ability of this application to effectively scale to large numbers of processors in a
high-latency environment.

We first examined the effect of increasing overall system size while maintaining the
number of clusters constant. Figure 3 shows a constant value of K=4, while N varies from
64 to 1024. In this graph, note the Inter-cluster IPC (Inter-Process Communication) times
do not vary, as would be expected with a fixed number of clusters. However, the Intra-
cluster IPC costs steadily increase. Also, as shown in Figure 3, note that all compute
phases decrease overall execution up to the maximum system size of 4,096 processors.
With a coarse-grained problem such as identifying xenologs, this is not surprising. The
issue of trade-off with communication time is addressed later.

XenoCluster Runtimes
K=4

1
10

100
1000

10000
100000

1000000
10000000

In
tra

 IP
C

In
te

r I
PC

In
itia

l B
las

t

Rec
ip.

 B
las

t

Alig
nm

en
t

PHYLI
P

Tre
e

Clus
te

r

Execution Phases

Time
(Seconds)

N=64

N=256

N=512

N=1024

Fig. 3. XenoCluster component execution times with number of clusters (K) fixed, cluster size
(N) varying. Total number of compute nodes varies from 256 to 4096

Figure 4 examines the case of holding the cluster size (N) fixed, while varying
cluster size (K). Now, the Intra-cluster IPC costs are fixed as cluster size increases,
but the Inter-IPC costs increase. However, the effect of increasing the volume of data
between clusters has a more harmful overall affect due to higher latency, than
increasing intra-cluster IPC as demonstrated in Figure 3. This is most striking when
comparing the Intra-IPC costs with K=4, N=1,024 at 126,976 seconds, with the Inter-
IPC costs with K=1,024, N=4 at 318,464 seconds.

Bringing the communication and computation costs together, and examining a
range of combinations of K and N, Figure 5 illustrates the potential benefits of a grid
solution to the xenolog problem. Performing an optimization search of this parameter
space (not described here) produces the optimal configuration of K=16, and N=128.
Such a 2,048 node grid solution would yield an execution time of 12.8 days. Also
shown in Figure 5 are the execution times of the extreme cases of N=1, K=1, and
N=1, K=16384, clearly demonstrating the tradeoff between communication and
computation, and the need to construct a grid configuration of a significant number of
clusters.

364 J.D. Walters et al.

XenoCluster Runtimes
N=4

1
10

100
1000

10000
100000

1000000
10000000

In
tra

 IP
C

In
te

r I
PC

In
itia

l B
las

t

Rec
ip.

 B
las

t

Alig
nm

en
t

PHYLI
P

Tre
e

Clus
te

r

Execution Phases

Time
(Seconds)

K=64

K=256

K=512

K=1024

Fig. 4. XenoCluster component execution times with cluster size (N) fixed, number of clusters
(K) varying. Number of compute nodes varies from 256 to 4096

XenoCluster Runtimes

1
10

100
1000

10000
100000

1000000
10000000

100000000

In
tra

 IP
C

In
ter I

PC

In
itia

l B
las

t

Recip
. B

las
t

Alig
nm

en
t

PHYLI
P

Tre
e

Cluste
r

Tota
l

Execution Phases

Time
(Seconds)

N=1 K=1

N=4 K=1

N=64 K=4

N=128 K=16

N=2 K=4096

N=1 K=16384

Fig. 5. XenoCluster execution times for varying number of clusters and cluster sizes. Total
number of compute nodes varies from 1 to 16384

Each of the three phases of the system lent themselves to different forms of
parallelization and optimization. Since each of the 20,364 mRNAs through the COE
system are non-causally related and independent, a simple batch scheduling system was
employed to gain close to linear speed up. However, the bandwidth needs of BLAST for
database access hindered the ideal linear speed up. At 1.8 GB, the non-redundant
nucleotide (NR) database presented a significant load even for modern gigabit networks
to transfer. Therefore, cached copies of the databases were stored on the compute nodes.
Future work in this area would involve modifying the database caching system to
integrate into existing grid computing infrastructures. One solution would involve
creating a hierarchy of cached NR databases across all clusters in a grid.

 XenoCluster: A Grid Computing Approach to Finding Ancient EGA 365

The tree generation phase of the computation benefits most from a grid computing
approach – even with small cluster sizes. This stage requires relatively little data per
node, while CPU demands are high – the ideal large-grained application
characteristic. These properties lend themselves to a grid architecture where CPUs are
inexpensive and network bandwidth is at a premium.

Finally, the third phase of the computation which involves the clustering of all
20,364 trees stands as the best candidate for further parallelization. The inter-tree
distance matrix could be broken in to smaller sub-matrices and distributed via inter-
process communication, a la MPI. An MPI solution of the problem is currently being
implemented which would reduce the final overall computation time to a fraction of
the current best performance. This solution partitions the distance matrix in a virtual
2-D mesh of processors which seeks to minimize interprocessor communication by
careful assignment of trees to processors.

5 Conclusions

This paper has shown a large class of applications which just a few years ago would
not have been possible due to both a lack of genomic data, but more importantly, the
lack of an effective parallel computational strategy. XenoCluster has shown an
effective speedup of a prototype scaled version of the xenolog-finding problem from
roughly 2 years to less than one day in a grid environment of 1000s of processors in
varying sizes of compute clusters.

However, it must be pointed out that the full solution of this biologically-driven
problem will only be accomplished by an overall iterative refinement of the clustering
by re-aligning concatenated cluster members, generation of trees and comparison of
resulting tree clusters with predicted trees. This interpretation step must be done with
close collaboration with evolutionary biologists. Thus, the need for an efficient grid
deployment to this problem becomes even more paramount, and is the subject of our
ongoing work.

Acknowledgments

TES was supported under a Career Development Award from Research to Prevent
Blindness.

TBB was supported by an NRSA post-doctoral fellowship no 1F32HG002881.

References

[1] Computational Grids., I. Foster, C. Kesselman. Chapter 2 of "The Grid: Blueprint for a
New Computing Infrastructure", Morgan-Kaufman, 1999.

[2] Ellisman, M. and Peltier, S. Medical data federation: The biomedical informatics research
network. In The Grid: Blueprint for a New Computing Infrastructure, 2nd Ed., I. Foster
and C. Kesselman, Eds. Morgan Kaufmann, San Francisco, 2004.

[3] Globus: A Metacomputing Infrastructure Toolkit. I. Foster, C. Kesselman. Intl J.
Supercomputer Applications, 11(2):115-128, 1997.

366 J.D. Walters et al.

[4] Open Grid Services Architecture. http://www.globus.org/ogsa/
[5] Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM,

Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV,
Vasudevan S, Wolf YI, Yin JJ, Natale DA. (2003) The COG database: an updated version
includes eukaryotes. BMC Bioinformatics. 4(1):41.

[6] Li, L., Stoeckert, C. J. Jr., Roos, D. S. (2003). OrthoMCL: Identification of Ortholog
Groups for Eukaryotic Genomes. Genome Res. 13: 2178-2189

[7] Lee Y, Sultana R, Pertea G, Cho J, Karamycheva S, Tsia J, Parvizi B, Cheung F,
Antonescu V, White J, Holt I, Liang F, and Quackenbush J. (2002) Cross-referencing
eukaryotic genomes: TIGR orthologous gene alignments (TOGA). Genome Research
12(3): 493-502.

[8] Felsenstein, J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:
164-166.

[9] Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

[10] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search
tool. J Mol Biol 1990;215:403-410

[11] Pruitt KD, Katz KS, Sicotte H, Maglott DR. (2000) Introducing RefSeq and LocusLink:
curated human genome resources at the NCBI. Trends Genet. 16(1):44-47.

[12] Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G,
Gilbert JGR, Korf I, Lapp H, Lehvaslaiho H, Matsalla C, Mungall CJ, Osborne BI,
Pocock MR, Schattner P, Senger M, Stein LD, Stupka ED, Wilkinson M, Birney E. The
Bioperl Toolkit: Perl modules for the life sciences. Genome Research. 2002
Oct;12(10):1611-8.

[13] PBS Pro. http://www.pbspro.com/
[14] Thompson J D, Higgins D G and Gibson T J (1994). CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,
positions-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-
4680.

[15] Wang JTL, Shan H, Shasha D and Piel WH. (2003) TreeRank: A Similarity Measure for
Nearest Neighbor Searching in Phylogenetic Databases. Proceedings of the 15th
International Conference on Scientific and Statistical Database Management (SSDBM
2003), Cambridge, Massachusetts, pp. 171-180.

[16] Michael Litzkow, Miron Livny, and Matt Mutka, "Condor - A Hunter of Idle
Workstations", Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104-111, June, 1988.

[17] Sun Grid Engine. http://gridengine.sunsource.net/
[18] caGrid. https://cabig.nci.nih.gov/guidelines_documentation/caGRIDWhitepaper.pdf

A Model for Designing and Implementing

Parallel Applications Using Extensible
Architectural Skeletons

Mohammad Mursalin Akon1, Dhrubajyoti Goswami2, and Hon Fung Li2

1 Department of ECE, University of Waterloo, Canada
2 Department of Computer Science, Concordia University, Montreal, Canada

{mm akon, goswami, hfli}@cs.concordia.ca

Abstract. With the advent of hardware technologies, high-performance
parallel computers and commodity clusters are becoming affordable.
However, complexity of parallel application development remains one of
the major obstacles towards the mainstream adoption of parallel comput-
ing. As one of the solution techniques, researchers are actively investigat-
ing the pattern-based approaches to parallel programming. As re-usable
components, patterns are intended to ease the design and development
phases of a parallel applications. While using patterns, a developer sup-
plies the application specific code-components whereas the underlying
environment generates most of the code for parallelization. PAS (Parallel
Architectural Skeleton) is one such pattern-based parallel programming
model and tool, which defines the architectural aspects of parallel compu-
tational patterns. Like many other pattern-based models and tools, the
PAS model was hampered by its lack of extensibility, i.e., lacking of sup-
port for the systematic addition of new skeletons to an existing skeleton
repository. Lack of extensibility significantly reduces the flexibility and
hence the usability of a particular approach. SuperPAS is an extension of
PAS that defines a model for systematically designing and implementing
PAS skeletons by a skeleton designer. The newly implemented skeletons
can subsequently be used by an application developer. SuperPAS model
is realized through a Skeleton Description Language (SDL), which as-
sists both a skeleton designer and an application developer. The paper
discusses the SuperPAS model through examples that use the SDL. The
paper also discusses some of the recent usability and performance stud-
ies, which demonstrate that SuperPAS is a practical and usable parallel
programming model and tool.

1 Introduction

With time, computer hardware is getting inexpensive and faster. At the same
time, scientists are investigating increasingly complex problems with finer level of
detail, requiring larger computing power, sophisticated algorithms and cutting-
edge software. Research in High Performance Computing (HPC) is exploring
different aspects of available and foreseeable technology to realize those complex
problems.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 367–380, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

368 M.M. Akon et al.

Parallel application design and development is complex and hence is a major
area of focus in the domain of HPC. Numerous research has been conducted
and several approaches have been proposed for hiding some of these complexi-
ties. This research focuses on one such approach, which is based on the idea of
(frequently occurring) design patterns in parallel computing. In the domain of
parallel computing, (parallel) design patterns specify recurring parallel compu-
tational problems with similar structural and behavioral components, and their
solution strategies. Several parallel programming systems have been built with
the intent to facilitate rapid development of parallel applications through the
use of design patterns as reusable components. Some of these systems are En-
terprise [1], Tracs [2], DPnDP [3], COPS [4], PAS [5], and ASSIST [6].

Most of the previous research in this direction focused on the algorithmic
or behavioral aspects of patterns, popularly known as algorithmic skeletons [7].
On the contrary, Parallel Architectural Skeletons (PAS) [8, 5] focus on the ar-
chitectural or structural aspects of message-passing parallel patterns. Each ar-
chitectural skeleton in PAS encapsulates the various structural attributes of a
pattern in a generic (i.e., pattern- and application-independent) fashion. An ar-
chitectural skeleton can be considered as a pattern-specific virtual machine with
its own communication, synchronization and structural primitives. A developer,
depending upon the specific needs of an application, chooses the appropriate
skeletons, supplies the required parameters for the generic attributes, and fi-
nally fills in the application-specific code. Architectural skeletons supply most of
the code that is necessary for the low-level and parallelism-related issues. Con-
sequently, there exists a clear separation between application dependent and
application independent issues (i.e., separation of concerns).

Each skeleton is a reusable component, which can be configured to the needs
of an application and also can be composed with other skeletons to create a
complete parallel application. Though re-usability is an obvious benefit, the lack
of extensibility is one of the major concerns associated with many of the pattern-
based parallel programming systems, including PAS. Most existing systems sup-
port a limited and fixed set of patterns that are hard-coded into those systems.
Generally, there is no provision for adding a new pattern without understanding
the entire system (including its implementation) and writing the pattern from
scratch (i.e., lack of extensibility). Consequently, if a required parallel computing
pattern demanded by an application is not supported, generally the designer has
no alternative but to abandon the idea of using the particular approach alto-
gether (lack of flexibility). Obviously, lack of flexibility hampers the usability of
a particular approach.

SuperPAS is an extension of the PAS system and it addresses the drawbacks
mentioned previously. An earlier discussion of SuperPAS based on the initial
phase of this research appeared in [9]. In this paper, we discuss the complete Su-
perPAS model via examples that use the Skeleton Description Language (SDL),
mainly targeted for a skeleton designer. Using the SDL, a skeleton designer can
design and implement a new skeleton without understanding the low level de-
tails of the system and its implementation. We elaborate the SDL via examples.

A Model for Designing and Implementing Parallel Applications 369

Note that the SDL is mainly for assisting a skeleton designer. An application
developer has to do most of the development work using pure C++.

We also describe some of the recent usability and performance studies. The
studies show that the SuperPAS significantly reduces the development time with-
out compromising the performance of the developed applications.

In the next section, we introduce the necessary preliminaries. In Section 3,
the SDL constructs are discussed through examples. A step-by-step application
development procedure is described in Section 4. Section 5 describes the usability
and performance tests and results. Finally, Section 6 concludes our discussion
emphasizing on current research trends and future directions.

2 Preliminaries

Parallel Architectural Skeletons (abbreviated as PAS) [5, 8] generically encap-
sulate the structural/architectural attributes of message-passing parallel com-
puting patterns. Each PAS skeleton is parameterized where each parameter is
associated with some attribute. The value of a parameter is determined during
the application development phase. A PAS skeleton with unbound parameters
is called an abstract skeleton or an abstract module. An abstract skeleton be-
comes a concrete skeleton or a concrete module, when the parameters of the
skeleton are bounded to actual values. A concrete skeleton is yet to be filled
in with application-specific code. Filling a concrete skeleton with application-
specific code results in a code-complete parallel module or simply a module. Var-
ious phases of an application development using PAS are roughly illustrated in
Figure 1(a). The figure shows that different parameter bindings to the same
abstract skeleton can result in different concrete skeletons.

Each abstract skeleton (or abstract module) consists of the following set of
attributes: (i) Representative of a skeleton represents the module in its action
and interactions with other modules. The initial representative is empty and
is subsequently filled with application-specific code during application develop-
ment. (ii) The back-end of an abstract module Am can be formally represented
as {Am1, Am2, . . . , Amn}, where each Ami is itself an abstract module. The
type of each Ami is determined after the abstract module Am is concretized.
Note that collection of concrete modules inside another concrete module results
in a (tree-structured) hierarchy. Consequently, each Ami is called a child of Am,
and Am is called the parent. The children of a module are peers of one another.
In this paper, the children of a module are also referred as computational nodes
of the associated skeleton or patterns. (iii) Topology is the logical connectivity
between the children inside the back-end as well as the connectivity between the
children and the representative. (iv) Internal primitives are the pattern-specific
communication, synchronization or structural primitives. Interactions among the
various modules are performed using these primitives. The internal primitives,
the inherent properties of the skeleton, capture the parallel computing model
of the associated pattern as well as the topology. Figure 1(b) diagrammatically
illustrates attributes of an abstract and a concrete 2-D Mesh skeleton.

370 M.M. Akon et al.

Concrete
skeleton

Code−complete
module

Abstract skeleton

ConcretizationConcretization

Application code Application code

(a) Abstract skeleton, concrete skeleton and
code complete module

External
primitives

Internal
primitives

Abstract skeleton

Representative

Back End

Concrete skeleton

Other abstract
skeletons

 Am

(Children of Am)

(b) Different components
of a skeleton

Fig. 1. PAS skeletons and their components

There are pattern-specific parameters associated with some of the previous
attributes. For instance, if the topology is a Mesh, then the number of dimensions
of the mesh is one parameter, and the nature of the connectivities among the
nodes at the edges (i.e., toroidal or non-toroidal) is another parameter. Binding
these parameters to actual values, based on the needs of an application, results
in a concrete module. A concrete module Cm becomes a code-complete module
when: (i) the representative of Cm is filled in with application-specific code, and
(ii) each child of Cm is code-complete.

All of the attributes of an abstract skeleton are inherited by the corresponding
concrete skeletons as well as the code-complete modules. In addition, we define
the term external primitives of a concrete or a code complete module as the set
of primitives using which the module (i.e., its representative) can interact with
its parent (i.e., representative of the parent) and peers (i.e., representatives of
the peers). Unlike internal primitives, which are inherent properties of a skeleton,
external primitives are adaptable, i.e., a module adapts to the context of its par-
ent by using the internal primitives of its parent as its external primitives. While
filling in the representative of a concrete module with application-specific code,
the application developer uses the internal and external primitives to interact
with other modules in the hierarchy.

A parallel application developed using PAS is a hierarchical collection of
(code-complete) modules. Conceptually, each concrete module can be consid-
ered as a pattern-specific virtual machine with its own communication, synchro-
nization and structural primitives. A user fills in these virtual machines with
application-specific code, starting bottoms-up in the hierarchy, to create the
complete parallel application. The root of the hierarchy, i.e. a code-complete
module with no parent, represents a complete parallel application. Each non-
root node of the hierarchy represents a partial parallel application. Each leaf

A Model for Designing and Implementing Parallel Applications 371

of the hierarchy is called a singleton module (and correspondingly, a singleton
skeleton for the abstract counterpart).

3 SuperPAS Model and the Associated SDL

In this section, we discuss about the model of SuperPAS with the help of the
associated Skeleton Description Language (SDL). First, we give a brief overview
of SuperPAS. The subsequent discussion describes the SDL for designing and
implementing abstract and concrete skeletons.

3.1 Basic Idea Behind the SuperPAS Model

SuperPAS model incorporates the PAS model, and provides extra features to
facilitate design and implementation of new abstract skeletons. SuperPAS pro-
vides a set of multidimensional grids to embed the topologies of newly designed
(abstract) skeletons. Each node of the grid is considered as a virtual processor.
Each multidimensional virtual processor grid (VPG) is equipped with its own
communication and synchronization primitives. These primitives include opera-
tions for synchronous and asynchronous peer-to-peer communication, collective
communication, and synchronization-specific primitives. We chose to make the
VPG primitives a super-set of the basic communication-synchronization primi-
tives supported in some of the prominent parallel programming environments.
Our choice is influenced by the MPI standard, PVM documentations, our ex-
periences with PAS and other pattern-based systems, and various research arti-
cles (e.g., [10]). In the process of designing an abstract skeleton, the skeleton de-
signer needs to embed the topology of the newly designed skeleton to the existing
grid topology provided by SuperPAS, and consequently map each of its children
(i.e., abstract modules of the back-end) into a VPG node. The embedding of a
skeleton into a VPG is complete when the associated communication, synchro-
nization and structural primitives of the skeleton are defined. These primitives
are defined on top of the existing SuperPAS-provided primitives for the VPG.
The following discussion elaborates and exemplifies these issues.

3.2 The SDL for Abstract Skeletons

As mentioned before, the SDL is mainly targeted towards a skeleton designer
who designs and implements new abstract skeletons and integrates them into the
existing skeleton repository. We demonstrate the different language features by
describing the design procedure of an abstract Wavefront skeleton, which imple-
ments the Wavefront pattern. Figure 2(a) is the visualization of the Wavefront
skeleton where its constituents and topology are shown. The visualization helps
the designer to make several design decisions. At first, she decides about the pa-
rameters of the skeleton. For example, in this case, the structure of a Wavefront
skeleton becomes generic if the the number of rows (or the number of columns)

372 M.M. Akon et al.

Representative

...

...

si
ze

size

(a) Wavefront skeleton

VPG nodes
Implicit
representative

VPG
...

...

...

...

(b) A 2-D VPG

Communication
primitives

...

...

...

...

Null nodes

si
ze

size

(c) Embedding skeleton
topology to the VPG

Fig. 2. Mapping wavefront skeleton components into a 2-D VPG

of the skeleton is considered to be a parameter rather than a constant. In this
example, we name this parameter as size.

In the case of a Wavefront skeleton, the choice of a two dimensional VPG (Fig-
ure 2(b)) for embedding the topology of the skeleton is an obvious choice because
it facilitates a one-to-one mapping of the children (of the skeleton) into the nodes
of the VPG. Figure 2(c) shows one such mapping. Note that each VPG has an im-
plicit representative node, to which the representative of the skeleton is mapped
onto. From the figure, it can be found that even after limiting the height and
width of the VPG (to the parameter size), there are virtual processors to which
no child of the skeleton are mapped onto. Those virtual processors are called
null virtual processors or null nodes.

00 integer size; // The parameter for the skeleton
01 // Design of the the Wavefront skeleton follows:
02 skeleton Wavefront(2) { // Embedded into a 2 dimensional VPG
03 LOCAL = {
04 void init(void) { // The initialization function
05 // Set the dimensions of the skeleton topology
06 for (int i = 0; i < GetDimension(); i++)
07 SetDimensionLimit(i, size);
08 }
09 bool non_null(const Location & loc) { // Define non-null nodes
10 // loc[0], loc[1], .. indicate position of a VPG node in a
11 // specific dimension, i.e. loc[0] is for the lowest
12 // dimension, loc[1] is for next dimension, etc.
13 if (loc[1] <= loc[0]) // column number <= row number
14 return true;
15 return false;
16 }
17 };
18 INITIALIZE = init; // Set the name of the initialization function
19 MAPPING = non_null; // Set the name of the mapping function
20 PRIVATE = { ... }; // Private primitives
21 PUBLIC = { ... }; // Public primitives
22 }

As is shown in the previous SDL code, the skeleton description starts with
the declaration of the parameters, and subsequently the definitions of the con-

A Model for Designing and Implementing Parallel Applications 373

stituents of the skeleton and their embeddings to the 2-D VPG. The initialization
function init (line 18) limits the length of both of the dimensions of the VPG to
the parameter size. The function non null (line 19) returns true for all non-null
VPG nodes, i.e., nodes located on or below the upper diagonal of the VPG.
Consequently it defines the embedding of the Wavefront skeleton into the VPG.
It should be noted that GetDimension and SetDimensionLimit are two of the
built-in structural primitives provided by SuperPAS.

The definition of the skeleton is not complete unless the topology (i.e., con-
nectivity) of the skeleton components is defined. In practice, the (virtual) con-
nectivity is established via defining the internal communication primitives of
the skeleton. SuperPAS divides the internal primitives into two categories: pri-
vate primitives are to be used exclusively by the representative of the skeleton,
whereas public primitives are inherited by the children as external primitives. In
the case of the Wavefront skeleton, a receive message from the child, located at
the last column is a private primitive whereas a send message to the left peer is
a public primitive. The SDL code for defining the private and public primitives
is shown next:
...
skeleton Wavefront (2) { // Embedded into a 2 dimensional VPG

LOCAL = { ... };
INITIALIZE = ...;
MAPPING = ...;
// private primitives
PRIVATE = {

// Send a message to a child located at <nRow, 0>
bool SendToNodeAt(int nRow, Msg & m) {

Location loc;
loc[1] = 0, loc[0] = nRow;
return SendChild(loc, m); // VPG primitive provided by SuperPAS

}
// Receive a message from the child located at <size - 1, size - 1>
bool RecvFromLastNode(Msg & m) {

Location loc;
loc[0] = loc[1] = size - 1;
return RecvChild(loc, m); // VPG primitive provided by SuperPAS

}
...

};
// Public primitives
PUBLIC = {

// COMMUNICATION PRIMITIVES
// Send message from node <i, j> to <i, j+1>
void SendRight(Msg &m) {

Location loc = GetLocation();
loc[1] = loc[1] + 1;
SendPeer(loc, m); // VPG primitive provided by SuperPAS

}
// Node <i, j> receive message from node <i, j+1>
void RecvRight(Msg &m) { ... }
...
// Receive message from the representative
void RecvRepresentative(Msg &m) {

RecvParent(m); // VPG primitive provided by SuperPAS
}
...
// STRUCTURAL PRIMITIVES
// Check if node is located at the first column
bool IsAtFirstColumn() {

Location loc = GetLocation();

374 M.M. Akon et al.

return loc[1] == 0; // is column number == 0?
}
// Check if node is located at the diagonal
bool IsAtDiagonal() {

Location loc = GetLocation();
return loc[0] == loc[1]; // is column number == row number?

}
...

};
}

In the previous code, the skeleton-specific private primitives (e.g., SendToN-
odeAt, RecvFromLastNode, etc.) and the public primitives (e.g., SendRight, IsAt-
Diagonal, etc.) are defined inside the language constructs PUBLIC and PRI-
VATE respectively. These skeleton-specific primitives are built on top of the
basic SuperPAS-provided primitives for the 2-D VPG, i.e. SendChild, RecvPeer,
GetLocation, etc.

3.3 The SDL for Concrete Skeletons

The SDL also provides supports to an application developer during the con-
cretization phase. However, it should be noted that the application developer
has to do majority of the development work using pure C++. According to
the PAS model, concretization of skeletons during application development is a
top-down procedure, starting at the root of the hierarchy. While developing an
application, a developer chooses the appropriate skeleton, from the repository of
abstract skeletons, as the root of the hierarchy. Then she binds the parameters
of the skeleton with appropriate values and decides about the types of its chil-
dren (i.e., labeling each children with an abstract skeleton type). The labeled
(abstract) children are subsequently concretized and consequently concretization
proceeds in a top-down fashion.

Stage 1 Stage 2 Stage 3

MIS skeleton
DP skeleton

MNIS skeleton

Pipeline skeleton

Legend:
MIS : Master and Identical Slaves
DP : Data Parallel
MNIS: Master and Non−Identical Slaves

(a) Pictorial View of Hierarchy

Pipeline {
 MIS { ... },
 DP { ... },
 MNIS { ... }
}

Child Type 0
Child Type 1
Child Type 2

(b) Expressing hierarchy in
SuperPAS

Fig. 3. Two levels of skeleton hierarchy

A Model for Designing and Implementing Parallel Applications 375

For example, let us consider the skeleton hierarchy of Figure 3(a), decided by
an application developer. The root of the hierarchy is constituted by a Pipeline
skeleton. Subsequently, the first child (i.e., the first stage) of the Pipeline is
labeled with the abstract MIS (Master and Identical Slaves) skeleton. The sec-
ond and the third stages are labeled with DP and MNIS skeletons respectively,
which stand for Data Parallel and Master and Non-Identical Slaves skeletons.
The corresponding SDL code for expressing this hierarchy in SuperPAS is shown
in Figure 3(b). The labelled children are subsequently concretized and thus con-
cretization proceeds top down in the hierarchy. The example in the next section
elaborates it further.

4 Example: An Image Convolution Application

Image convolution is an important application in the domain of image process-
ing [11]. Here we describe a step by step procedure to develop a parallel image
convolution application using SuperPAS.

4.1 Problem Description

Image convolution is performed by applying a mask to each of the image pixels.
The simplest way to make the operations parallel is to divide the whole image
into columns and/or rows. Different parts of the image are distributed to dif-
ferent processes and each process computes the convolution of its assigned part.
Unfortunately, there are dependencies among these computing processes, i.e.,
each process needs to exchange data with its logically neighboring processes.

4.2 Concretizing Abstract Skeletons

As the problem description suggests, the application demands a 2-D Mesh skele-
ton with identical children (i.e., which actually represents data-parallel computa-
tion on a virtual mesh). The representative of the skeleton is mainly responsible
for data partitioning (and all the file system I/O, depending on the underly-
ing hardware constraints). The identical children of the mesh skeleton perform
the actual convolution. In this case, each child of the mesh is a Singleton skele-
ton, i.e., a skeleton with an empty back-end which is analogous to a traditional
sequential process. The two-level hierarchy for this application is shown in Fig-
ure 4. In the figure, icmesh is an instance of an abstract mesh skeleton, and
icsingleton is an instance of an abstract singleton skeleton. It should be noted
that icsingleton represents each identical child of the mesh skeleton.

The cluster on which this application runs consists of 10 dual-processors.
Consequently, for better performance, we decided to have 20 sequential processes
performing the convolution. For an input image of size 2048× 1536, we chose to
divide the image among 5× 4 children, each of which is a singleton module and
hence performs sequential computation. Based on this decision, we concretize
the icmesh skeleton as follows:

376 M.M. Akon et al.

// File name: image_conv.htree
icmesh { // icmesh is an isntance of Mesh skeleton
 icsingleton { // icsingleton is an instance of Singleton skeleton
 }
}

0−th Child Type for icmesh

Fig. 4. The two-level skeleton hierarchy for an image convolution application

// File name: icmesh.skel
// The icmesh skeleton: an instance of Mesh skeleton
integer k = 2; // A k-D VPG to which mesh is embedded into
// Bind the different parameters for the mesh as follows:
bool fWrapping = false; // A non-toroidal mesh
skeleton Mesh (k) {

LIMITS = {4, 5}; // Binding: columns = 4 and row = 5
...

}

We also need to specify a labeling function that labels each of the identi-
cal children of the icmesh skeleton as icsingleton, an instance of the abstract
singleton skeleton. The corresponding SDL code is shown in the following :

// File name: icmesh.skel
...
skeleton Mesh (k) {

...
}
LOCAL = {

void label(void) {
Location loc;
// for all children
for (loc[1] = 0; loc[1] < GetDimensionLimit(1); loc[1]++) {

for (loc[0] = 0; loc[0] < GetDimensionLimit(0); loc[0]++) {
// Label each child as icsingleton (0-th child type)
AddLabel(&Mesh, loc, 0);

}
}

}
};
RULE = label;
}

At the second level of the hierarchy, the icsingleton skeleton has no parameter
to bind. Moreover, a singleton skeleton has an empty back-end and hence it
has no children to be labeled. Consequently, concretization of the icsingleton
skeleton is a void procedure. The corresponding SDL code is omitted due to
space constraints.

4.3 Code-Complete Modules

Filling in the representatives of each of the icmesh and icsingleton skeleton re-
sults in the respective code complete modules and hence the complete parallel
application (refer to section 2). Before implementing the code complete mod-
ules, we need to first generate the C++ code for the skeleton hierarchy. The
SuperPAS-provided tools generate one C++ object per skeleton. The developer

A Model for Designing and Implementing Parallel Applications 377

subsequently needs to fill in the representative code for each skeleton object. The
Rep method of each of the generated skeleton objects is interpreted as the rep-
resentative of the corresponding skeleton. In the case of the image convolution
application, the icsingleton and icmesh objects are generated, and subsequently
they are filled in with application-specific code as follows:

class icmesh : ... {
...
public:

icmesh(...) : ... { ... }
void Rep(void) { // Representative of mesh module

// Fill in application-specific code as follows:
MsgImage imgMain, mask;
// Read the image and the mask from file into imgMain
// and mask objects
...
// Now partition the image
int nParts = GetDimensionLimits(0) * GetDimensionLimits(1);
MsgImage * imgParts = new MsgImage[nParts];
... // Divide imgMain among imgParts
// Now send the partitions to the children
ScatterToChildren(imgParts); // An internal primitive (section 2)
BroadcastToChildren(mask); // An internal primitive (section 2)

// Now gather the convoluted image partitions from children
GatherFromChildren(imgParts);

// Combine the convoluted image partitions into the imgMain object
...
// Write the result back to a file
...

}
...
}

class icsingleton : ... {
...
public:

icsingleton(...) : ... { ... }
// NEWLY ADDED METHODS (BY DEVELOPER) BEGINS
void RecvRight(Msg &m) {

static int * p = {+1, 0}; // Right node in a 2-d mesh
External.RecvNeighbor(p, m); // ‘‘External’’ stands for an external

// primitive. Refer to section 2.
}
void SendLeft(Msg &m) {

static int * p = {-1, 0}; // Left node in a 2-d mesh
External.SendNeighbor(p, m);

}
...
bool IsAtFirstColumn(void) {

return External.IsAtBeginning(0);
}
...
// ADDED METHODS ENDS
void Rep(void) { // Representative of singleton module

// Fill in with your code
MsgImage imageIn, imgi, mask; // The image partition and the mask
...
// receive the image partition from parent
External.RecvRepresentative(imageIn);
// Receive the mask
External.RecvRepresentative(mask);
// Exchange information with neighbors
...
// Now convolute
...

378 M.M. Akon et al.

// imageOut contains only the part of the image to be sent back
MsgImage imageOut(imageIn.dx(), imageIn.dy());
...
// Send the result back to parent
External.SendRepresentative(imageOut);

}
};
...

The previous code uses the MsgImage class. This class is inherited from
SuperPAS library-provided Msg class. The Msg class is a generic message con-
tainer used by all SuperPAS-provided built-in communication primitives. It has
two abstract methods: Marshal() and Unmarshal(), which specify how the cor-
responding message object should be packed into buffer and subsequently un-
packed upon receipt. These two abstract methods need to be overwritten by an
application developer, as is shown below for the MsgImage class:

class MsgImage : public Msg {
int width, height;
int * data;

public:
MsgImage(void) : Msg(), width(0), height(0), data(NULL) { }
MsgImage(int _height, int _width) : Msg(), height(_height),

width(_width) {
data = ...;

}
...
void SetImage(const gdImagePtr im) { ... }
int GetWidth(void) { return width; }
// other methods
...
// FOLLOWING METHODS MUST BE OVER WRITTEN
// How to marshal this object
void Marshal(void) {

// marshal width
MarshalData(width);
// marshal height
MarshalData(height);
// marshal image data
MarshalData(data, width * height);

}
// How to unmarshal this object
void Unmarshal(void) {

// unmarshalling must be in same order of marshalling
// unmarshal width
UnmarshalData(width);
// and height
UnmarshalData(height);
if (data) delete []data;
data = new int[width * height];
// we have proper memory, now unmarshal image data
UnmarshalData(data, height * width);

}
};

5 Usability and Performance Studies

SuperPAS is currently implemented using C++ on top of MPI and is ported
onto a Beowulf cluster. To conduct our usability tests, we chose a group of

A Model for Designing and Implementing Parallel Applications 379

twelve students, enrolled in an introductory graduate-level course on parallel
and distributed computing. Students were asked to compare their experiences
with MPI and SuperPAS. The study pointed out four important points: (1) the
learning curve for the SuperPAS model is more than the MPI model. On the
average, the time to learn the SuperPAS model and the SDL is approximately
30% more than that of the MPI model and its API; (2) developing parallel
applications is significantly easier and less time consuming, if the required ab-
stract skeletons already exist in the repository. In the case of SuperPAS, it took
approximately 50% less time and coding effort as compared to MPI; (3) the Su-
perPAS system becomes more beneficial with increased complexity of the given
application problem, i.e., if the problem structure is simple, it is better to use
MPI provided that the required abstract skeleton(s) do not already exist in the
repository; (4) the object-oriented interface and skeleton-specific primitives for
communication-synchronization are easier to use as compared to the primitives
provided by MPI.

To test the performance of SuperPAS system, we developed two image pro-
cessing applications. The first application convolutes a series of images and has
already been discussed. The second application finds the contours of objects in
images of maps of buildings and roads. The applications were developed using
both MPI and SuperPAS. The run-times of the applications were measured as
an average of at least 10 runs. The results showed that the performance degra-
dation using SuperPAS as compared to MPI is rather negligible (less than 1%).
Since the SuperPAS run-time system is a thin layer over MPI, this performance
degradation is expected. It is also found that the initial environment initializa-
tion phase for a SuperPAS application is much more complex and hence more
time consuming than that of a similar MPI application. However, it should be
noted that this initialization takes place only once during the life time of the
application. Though the initialization time grows proportional to the complexity
of the skeleton hierarchy, it becomes rather insignificant if the application has
a relatively long run-time. More performance results about the PAS system can
be found in [5].

6 Conclusion and Future Work

SuperPAS is a step towards making PAS more flexible and usable by supporting
both extensibility and skeleton composition. In this paper, we describe the Su-
perPAS model for designing abstract PAS skeletons. We also extend the model
for supporting composition of abstract skeletons to design new abstract skele-
tons. Recent usability studies have demonstrated that SuperPAS might ease
the development process for big and complex applications. We have also found
that there is no significant performance degradation (less than 1%) while using
SuperPAS.

Currently our research team is working on several other issues of the PAS
system. We are investigating the issues of performance modelling and profiling
for PAS skeletons. Synchronous slicing, a method to extract the communication

380 M.M. Akon et al.

synchronization behaviour of a given application, is of particular interest. We
are also working on the issues of static and dynamic optimizations and fault
tolerance aspects of applications developed using PAS. Many of these aspects of
our current research will be reported in our future works.

References

1. Schaeffer, J., Szafron, D., Lobe, G., Parsons, I.: The enterprise model for developing
distributed applications. IEEE Parallel and Distributed Technology: Systems and
Applications 1 (1993) 85–96

2. Bartoli, A., Corsini, P., Dini, G., Prete, C.A.: Graphical design of distributed appli-
cations through reusable components. IEEE Parallel and Distributed Technology
3 (1995) 37–50

3. Siu, S., Singh, A.: Design patterns for parallel computing using a network of
processors. In: 6th International Symposium on High Performance Distributed
Computing (HPDC ’97), Portland, OR (1997) 293–304

4. MacDonald, S., Szafron, D., Schaffer, J., Bromling, S.: From patterns to frameworks
to parallel programs. Parallel Computing 28 (2002) 1663–1683

5. Goswami, D., Singh, A., Preiss, B.R.: From design patterns to parallel architectural
skeletons. Journal of Parallel and Distributed Computing 62 (2002) 669–695

6. Vanneschi, M.: The programming model of assist, an environment for parallel and
distributed portable applications. Parallel Computing 28 (2002) 1709–1732

7. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, Massachusetts (1989)

8. Goswami, D.: Parallel Architectural Skeletons: Re-Usable Building Blocks for Par-
allel Applications. PhD thesis, University of Waterloo, Canada (2001)

9. Akon, M.M., Goswami, D., Li, H.F.: A parallel architectural skeleton model sup-
porting extensibility and skeleton composition. In: Second International Sympo-
sium on Parallel and Distributed Processing and Applications, Hong Kong (2004)
Lecture Notes in Computer Science, Vol. 3358, pp. 985-996.

10. Chan, F., Cao, J., Sun, Y.: High-level abstractions for message passing parallel
programming. Parallel Computing 29 (2003) 1589–1621

11. Myler, H.R., Weeks, A.R.: The Pocket Handbook of Image Processing Algorithms
In C. Prentice-Hall, Englewood Cliffs, N.J (1993)

 V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 381 – 392, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Parallel Computational Code for the Eduction of
Coherent Structures of Turbulence in Fluid Dynamics

Giancarlo Alfonsi1 and Leonardo Primavera2

1 Dipartimento di Difesa del Suolo, Università della Calabria
Via P. Bucci 42b, 87036 Rende (Cosenza), Italy

Phone: + 39 0984 496571, Fax: + 39 0984 496578
alfonsi@dds.unical.it

2 Dipartimento di Fisica, Università della Calabria
Via P. Bucci 33b, 87036 Rende (Cosenza), Italy

Phone: + 39 0984 496138, Fax: + 39 0984 494401
lprimavera@fis.unical.it

Abstract. A parallel computational code is developed for the execution of the
Proper Orthogonal Decomposition (POD) of turbulent flow fields in fluid
dynamics. The POD is an analytically-founded statistical technique that permits
the eduction of appropriately-defined modes of the flow from the background
flow, allowing the determination of the coherent structures of turbulence. The
computational aspects of the different phases of the computing procedure are
analyzed and the development of the related parallel computational code is
described. Computational tests corresponding to different computing domains
and number of processors are executed on a HP-V2500 parallel computing
system and the results are shown in terms of parallel performance of the
different phases of the calculations separately considered and of the
computational code in the whole.

1 Introduction

In fluid dynamics and turbulence research a wide class of methods of investigation
involves numerical simulations.

Numerical simulation of turbulence via digital computers implies the execution of
the numerical integration of the three-dimensional unsteady Navier-Stokes equations
on an appropriate computing domain, for an adequate number of time steps. Different
numerical techniques, ranging from finite differences, finite elements, spectral
methods and appropriate combinations of the basic algorithms in mixed techniques
(Alfonsi et al. [1], Passoni et al. [2]) can be used.

One of the problems involved in this activity at sufficiently high Reynolds numbers
is the remarkable difference existing between a solution of the Navier-Stokes
equations as an exercise of numerical analysis – however complex it may result – and
a solution of the same equations with the aim of obtaining a precise correlation of the
results with turbulence physics. In the latter case the accuracy of the calculations has
to be deeply monitored and the equations have eventually to be further manipulated in
following one of the existing approaches to the numerical simulation and/or modeling
of turbulence.

382 G. Alfonsi and L. Primavera

There are three main approaches to the numerical simulation and modeling of
turbulent flows: RANS (Reynolds Averaged Navier-Stokes equations), LES (Large
Eddy Simulation) and DNS (Direct Numerical Simulation of turbulence). One can
refer to Speziale [3], Lesieur & Métais [4] and Moin & Mahesh [5] for review works
of the three approaches, respectively.

Within the RANS approach Reynolds averaging is performed. Reynolds
decomposition and averaging consists in: i) separating the dependent variables of the
Navier-Stokes equations into mean and fluctuating parts, ii) substituting the
decomposed variables into the equations, iii) taking the average of the equations
themselves. Due to the nonlinear character of the system of the equations, the result is
that a new term in the momentum equation arises, the Reynolds stress term, a non-
zero correlation between fluctuating components of the velocity. One has:

 () () ijjijijjijit upuuuuu ∂∂+∂−=′′∂+∂+∂ ν
ρ
1

 (1)

where iu is the fluid velocity, p is the pressure, overbars denote time averaging and

primes denote fluctuating components, being ν and ρ the fluid kinematic viscosity

and density, respectively. Different models have been devised to face the problem of
the closure of the system of the Navier-Stokes equations: i) zero-equation models, in
which simple formulas are adopted for the Reynolds stress term, ii) one-equation
models, in which an additional differential equation is involved in the system of the
governing equations, in terms of turbulent kinetic energy κ , iii) two-equation
models, in which two additional differential equations are involved in terms of
turbulent kinetic energy κ and rate of dissipation of kinetic energy ε , iv) stress-
equation models, involving a number of additional partial differential equations (and
related models) for the description of the evolution of the terms representing the
Reynolds stress tensor.

In following the LES approach one wants to actually simulate the larger scales of
the flow and use a model for the smallest, based on the hypotesis of universal,
isotropic and purely dissipative behavior of the latter. A filter is applied to the Navier-
Stokes equations for scale separation (usually a convolution integral) and a model is
sought (the subgrid-scale model) for the term of the momentum equation that do not
result a function of the filtered variables, the subgrid-scale stress term. One has:

 () ijjijijijijijit upuuuuuuuuu ∂∂+∂−=′′+′+′+∂+∂ ν
ρ
1

 (2)

where overbars now denote filtering and primes denote subgrid-scale components.
Several subgrid-scale models have been devised for LES calculations of turbulent

flows, the Smagorinsky's model ([6]), the Scale Similarity model (Bardina et al. [7]),
the Spectral Eddy Viscosity group of models (Kraichnan [8]), the Structure-Function
model (Métais & Lesieur [9]), the RNG model (Yakhot et al. [10]), the Dynamic
Model (Germano [11]).

In the DNS approach the attitude of directly simulating all turbulent scales is
followed and the momentum equation (besides continuity) is considered without
modifications of any kind. One has:

 () ijjijijit upuuu ∂∂+∂−=∂+∂ ν
ρ
1

. (3)

A Parallel Computational Code for the Eduction of Coherent Structures of Turbulence 383

The critical aspect in following this method is the accuracy of the calculations that
in theory should be as high as to resolve the Kolmogorov microscales in both space
and time (or at most limited multiples of them, see, among others, Spalart [12]).

In all the three approaches outlined above, the major difficulty in performing
calculations at Reynolds numbers of practical interest lies in the remarkable amount
of computational resources required. The consequence for a long time has been that
only simple flow cases have been investigated numerically. The advent of the
supercomputing technologies has completely changed this scenario, opening new
perspectives in the field of the high-performance computational fluid dynamics (see
Passoni et al. [13],[14] and the list of references therein, for an account of recent
progresses in turbulence research using supercomputers).

Modern techniques of investigation of numerical and supercomputational nature
applied to turbulence research have the potential of greatly increasing the amount of
information gathered during a research (see Fischer & Patera [15] for a review) and
the continuous effort in studying turbulence in its full complexity (three-
dimensionality and unsteadiness) has brought researchers to manage very large
amounts of data.

A typical turbulent-flow database includes all three components of the velocity in
all points of a three-dimensional domain, gathered for an adequate number of time
steps of the turbulent statistically steady state. Such a database contains much
information about the character of a given turbulent flow but in the formation of the
value of each variable all turbulent scales have contributed and the effect of each
scale is nonlinearly combined with that of all other scales. It is otherwise recognized
that not all the scales of turbulence contribute to the same degree in determinig the
physical properties of a turbulent flow.

Methods can be devised to extract from a turbulent-flow database only the relevant
information, that has to be meant as to separate the effect of appropriately-defined
modes of the flow from the background flow or, finally, to extract the coherent
structures of the flow, whatever definition of coherent structure is adopted. There are
several techniques of both qualitative and quantitative nature for the eduction of the
coherent structures of turbulence (see Cantwell [16] and Robinson [17] for review
works on this subject). Of all the existing methods, a powerful technique for the
determination of the coherent structures of turbulence is that of the Proper Orthogonal
Decomposition (POD).

2 Proper Orthogonal Decomposition

The POD is an analytically-founded statistical technique that can be applied for the
extraction of the coherent structures of a turbulent flow field in fluid dynamics. The
method has been first introduced in turbulent flow analysis by Lumley [18] and has
been indipendently suggested by Kosambi [19], Loéve [20], Karhunen [21], Pougachev
[22] and Obukhov [23]. Besides turbulence it has been applied to other fields of science
such as oceanography, image processing and data compression. On its basis, starting
from the Navier-Stokes equations, it is also possible to construct low-dimensional
dinamical models for the analysis of the interaction of predetermined spatial and
temporal, local, coherent structures. The method is extensively presented in Sirovich
[24] and Berkooz et al. [25], and it is here summarized.

384 G. Alfonsi and L. Primavera

By considering an ensemble of temporal realizations of a non-homogeneous,
square integrable, three-dimensional, real-valued velocity field)t,x(u ji on a finite

domain D)3,2,1,(=ji , one wants to find the most similar function to the elements of

the ensemble on average, i.e. to determine highest-mean-square correlated structure
with all the elements of the ensemble. This corresponds to find a deterministic vector
function)(jx

i
φ , so that:

() ()()

() ()()
() ()()

() ()()jiji

jiji

jiji

jiji

x,x

x,t,xu

x,x

x,t,xu
max

φφ

φ

ψψ

ψ
ψ

22

= (4)

or, equivalently, find the member that maximizes the normalized inner product of the
candidate structure with the field)t,x(u ji . A necessary condition for problem (4) is

that)(jx
i

φ is an eigenfunction, solution of the eigenvalue problem and Fredholm

integral equation of the first kind:

 () () () ())(,,)(, li

D

kkjkjkikkj

D

klij xxdxtxutxuxdxxxR λφφφ =′′′=′′′ (5)

where),(),(txutxuR kjliij ′= is the two-point velocity correlation tensor. When D is

bounded, there exists a denumerable infinity of solutions of (5) and these solutions are

called the empirical eigenfunctions)()(

j

n

i xφ (normalized,)()(

j

n

i xφ = 1). To each

eigenfunction is associated a real positive eigenvalue)(nλ (ijR is non-negative by

construction) and the eigenfunctions form a complete set. Every member of the
ensemble can be reconstructed by means of a modal decomposition in the

 themselves:

 =
n

j

)n(

inji)x()t(a)t,x(u φ (6)

that can be seen as a decomposition of the originary random field into deterministic
structures)()(

j

n

i xφ , with random coefficients. The modal amplitudes are uncorrelated

and their mean square values are the eigenvalues themselves:
)()()(n

nmmn tata λδ= , (7)

being nmδ the Kroneker’s delta. A diagonal decomposition of ijR holds:

)()(),()()()(
k

n

jl

n

i
n

n

klij xxxxR ′=′ φφλ (8)

implying that the contribution of each different structure to the average content of
turbulent kinetic energy of the flow can be separately calculated:

 () () ==
n

n

D

jjiji dxtxutxuE)(,, λ (9)

where E is the total turbulent kinetic energy in the domain D. Thus, each eigenvalue
()nλ represents the contribution of each correspondent structure)(nφ to the total

amount of kinetic energy.
Among other cases, the POD has been used in wall bounded turbulent-flow

problems by Bakewell & Lumley [26], Aubry et al. [27], Moin & Moser [28],

eigenfunctions

A Parallel Computational Code for the Eduction of Coherent Structures of Turbulence 385

Sirovich et al. [29], Ball et al. [30] and Webber et al. [31]. In most of the
aforementioned works, mainly to limit the computational resources involved in the
POD calculations, flow cases exhibiting specific symmetries have been considered. A
typical example is that of the flow in a plane channel ([28],[31]), a problem
characterized by two homogeneous directions in which the correlation tensor has to
be evaluated – for all the three velocity components – only along the non-
homogeneous direction. Fully non-homogeneous problems (the majority in the field
of practical applications) require remarkably higher computational resources and thus
supercomputing technologies.

In this work a parallel computational code for the Proper Orthogonal
Decomposition of turbulent flow fields is developed. The code is general, it handles
three-dimensional velocity fields in physical space onto three-dimensional spatial
domains and can be used in all kind of problems since it does not require any
particular symmetry.

The two-point velocity correlation tensor at the left hand-side of equation (5) is
calculated in its complete form:

 () () ()t,z,y,xvt,z,y,xuz,z,y,y,x,xR jiij
′′′=′′′ (10)

so that the optimal representation of the velocity field outlined above is calculated in
all the three directions x,y,z.

3 The Computational Algorithm

The computational code for the implementation of the POD technique involves
several mathematical operations of different kind and in particular includes the
following main phases:

- evaluation of the two-point correlation tensor of the velocity components of
equation (5), phase CORR;

- evaluation of the integral of equation (5) on the computational domain D with the
use of the trapezoidal rule, phase TRAPEZ;

- execution of the tridiagonalization operations for the resulting matrix with the use
of the Householder method, phase TRED2 (see also [32]);

- solution of the eigenvalue problem (5) with determination of the eigenfunctions and
corresponding eigenvalues, phase TQLI (Tridiagonal QL Implicit, see also [32]);

- execution of a test to ensure the correct representation of the energy content of the
eigenvalues, phase TESTENERG;

- evaluation of the time dependent coefficients of equation (6) by means of a standard
inversion procedure, phase COEFF.

In terms of computer memory, the velocity database to which the POD procedure
has to be applied, requires a matrix of size ITMAXNMAXNCOMP ×× (NCOMP is
the number of the velocity components considered, NMAX is the number of grid
points in which the velocity field has been calculated and ITMAX is the number the
time steps of the temporal sequence of the instantaneous velocity data). The two-point

velocity correlation tensor requires a matrix of size ()2NMAXNCOMP × .

386 G. Alfonsi and L. Primavera

4 The Parallelization Technique

In devising a parallelization strategy for the POD code, each different phase of the
calculations is analyzed and a parallelization technique is implemented, with the aim
of minimizing the communications and balancing the computational load among the
processors for the whole code.

4.1 Phase CORR

For the evaluation of the two-point correlation tensor ijR of equation (5) this phase of

the calculations utilizes the velocity components stored in a matrix (matrix U). Both
matrices U and ijR have to be distributed onto the n available processors. The

procedures connected with the execution of CORR strongly depend on how matrix U
is distributed among the processors, rather than ijR . Matrix U is divided along the

time axis, i.e. to each processor is attributed a subset of velocity components
corresponding to the time interval ITMAX/n (n is the number of processors).

 Communications are needed among the processors in this case, in the sense
each processor has to cyclically communicate to the others its own portion of
matrix U.

4.2 Phase TRAPEZ

In this phase the evaluation of the integral in equation (5) with the trapezoidal rule is
performed, together with the transformation of ijR into the equivalent symmetric

problem. The quadrature formula utilizes appropriate weight functions occupying a
limited amount of memory that, when duplicated onto each processor, actually
eliminate the need of communications among processors in this phase of the
calculations.

4.3 Phase TRED2

The calculations incorporated in this phase can be logically divided in two parts, the
tridiagonalization of the symmetric matrix ijR (the most relevant part) and the build-

up of a rotation matrix Q for the transformation of the symmetric matrix ijR into the

tridiagonal matrix T

ijij QQRR =′ (T is transpose). In order to avoid an unbalanced load

distribution among the processors, a solution called cyclic parallelization of TRED2 is
adopted. This solution can be implemented through both the rows or columns of ijR

because of its symmetry. Working with the rows of ijR , they are distributed cyclically

among processors as follows:

- the first processor receives row 0, row n, row 2n, row 3n,
- the second processor receives row 1, row (n+1), row (2n+1), row (3n+1),
- the third processor receives row 2, row (n+2), row (2n+2), row (3n+2),

that

A Parallel Computational Code for the Eduction of Coherent Structures of Turbulence 387

Each processor receives in total a number of rows equal to the total number of the
rows divided by the number of processors. In this way the load of each processor
increases uniformly and the parallel performance remains constant.

4.4 Phase TQLI

In this phase of the calculations the eigenvalue problem associated to the matrix that
has been tridiagonalized during TRED2, is solved. Two sub-phases are incorporated
in this cycle, the calculation of the i-th eigenvalue and the updating of the
correspondent eigenvector, being the process of evaluation of the eigenvalues
characterized by a complexity of one order of magnitude less than that of the
calculation of the eigenvectors.

The computation of the eigenvalues has been duplicated onto the n available
processors and the updating of the eigenvectors has been parallelized. In this sub-
phase, being the matrix of the velocity correlation tensor distributed among the
processors by rows, no communications are required because of the fact that a
dependency exists in this direction, in the sense that the element (i, j+1) depends on
the element (i, j).

4.5 Phase TESTENERG

This phase is not particularly complex. The calculations are executed by all the
processors in parallel, being U distributed onto the processors along the temporal axis
(subsection 4.1).

4.6 Phase COEFF

In this phase of the calculations the processors have to operate independently on their
own portion of the tridiagonal matrix of the velocity correlation tensor. A cycle is
implemented, in which three elements belonging to three consecutive rows are
multiplied. Thus, in order to parallelize this phase efficiently – limiting the
communications among the processors – a cyclic partition of the matrix of the
correlation tensor among the processors is again needed, this time in groups formed
by three consecutive rows.

On the basis of the analysis of each of the different phases of the calculations to be
performed, the most relevant factors for the parallelization of the whole POD
procedure appear to be related to the optimization of TRED2, TQLI and COEFF. For
what TRED2 is concerned, the so-called cyclic distribution of the matrix ijR among

the processors is mainly needed (subsection 4.3). For what TQLI is concerned, it is
needed that an entire line is avaliable to each processor. In the case of COEFF, at
least three entire rows are needed for each processor (subsection 4.6). Thus, the
optimal solution for the parallelization of the code in the whole is the cyclic
distribution of the matrix of the correlation tensor in groups of three consecutive rows
onto each of the n avaliable processors.

Moreover, computational tests of preliminary nature have shown that only four of
the six main phases of the computing procedure significantly influence the execution
time, TRED2, TQLI, CORR and COEFF. TRED2 uses around 70% of the total time

388 G. Alfonsi and L. Primavera

with one processor in use, decreasing with the number of processors. TQLI uses
around 15% of the total time with one processor, also decreasing with the number of
processors. CORR on the contrary increases its execution time with the number of
processors, while the time used by COEFF is practically constant with the number of
processors. The remaining two phases weigh for less than the 1% of the total
execution time.

5 Results

The computer that has been used for the performance tests is a HP-V2500. It includes
20 processors PA-RISC 8500, all arranged in a single hypernode and totaling 16
Gbyte of RAM and 180 Gbyte of mass memory (up to 16 processors have been used
in the present calculations). The PA-RISC 8500 is a 64 bit processor, 440 Mhz of
frequency clock, 1 Mbyte of Data Cache on chip and 0.5 Mbyte of Instruction Cache
on chip per processor. The memory architecture is a crossbar-based symmetric
multiprocessor (SMP) of 88 × non-blocking multiported crossbar type. The
maximum bandwidth allowed is 15.36 Gbyte/s.

The parallel performance of the whole POD code and of its different phases
separately considered has been investigated for two different datasets. Dataset A with
NMAX=250 (NX=10, NY=5, NZ=5 are the grid points along x, y and z, respectively)
and ITMAX=50. Dataset B with NMAX =500 (NX=10, NY=10, NZ=5) and ITMAX=50
(NCOMP=3 in both cases). Groups of 2, 4, 8 and 16 processors have been used in the
calculations.

In Figures 1 and 2 the speed-ups of the four more relevant phases of the
calculations separately considered with the number of processors, are shown for both
datasets. The speed-up is defined as the run-time with one processor divided by the
run-time with a given number of processors.

Number of processors

S
pe

ed
-u

p

ideal
TRED2
TQLI
CORR
COEFF

1 2 4 8 16

1

2

4

8

16

Fig. 1. Dataset A. Speed-up of the four most relevant phases of the POD procedure separately
considered with the number of processors

A Parallel Computational Code for the Eduction of Coherent Structures of Turbulence 389

Number of processors

S
pe

ed
-u

p
ideal
TRED2
TQLI
CORR
COEFF

1 2 4 8 16

1

2

4

8

16

Fig. 2. Dataset B. Speed-up of the four most relevant phases of the POD procedure separately
considered with the number of processors

Figure 1 shows the speed-up of the four relevant phases with the number of
processors for daset A. TQLI exhibits a superlinear behavior, TRED2 is superlinear up
to 4 processors involved in the calculations, is linear with 8 processors and decays
with 16 processors. COEFF and CORR remain under the linear limit up to 16
processors.

Number of processors

S
pe

ed
-u

p

ideal

POD

1 2 4 8 16

1

2

4

8

16

Fig. 3. Dataset A. Speed-up of the whole parallel POD computational code with the number of
processors

390 G. Alfonsi and L. Primavera

Number of processors

S
pe

ed
-u

p
ideal

POD

1 2 4 8 16
1

2

4

8

16

Fig. 4. Dataset B. Speed-up of the whole parallel POD computational code with the number of
processors

Figure 2 shows the speed-up of the four relevant phases with the number of
processors for dataset B. TQLI and TRED2 exhibit a superlinear (or almost linear)
behavior up to 16 processors. The superlinear results are related to the involvement of
the cache. By increasing the amount of the processors, the memory required by each
processor decreases and so do the cache-miss events. The linear behavior of TQLI is a
permanent factor in the execution of the program, due to the absence of significant
amounts of communications in the parallelized TQLI phase.

In Figure 3 and 4 the speed-ups of the whole POD code are reported for both
datasets A and B. In the case of dataset A (Figure 3) the speed-up of the code is nearly
linear up to 4 processors and then the efficiency reaches about the level of the 60%
with 16 processors. In the case of dataset B (Figure 4) the speed-up is nearly linear up
to 8 processors and then the efficiency reaches about the level of the 95% with 16
processors (almost ideal).

Overall, the superlinear character of subroutines TRED2 and TQLI compensate the
behavior of subroutines COEFF and CORR, giving at the end satisfactory levels of
speed-up to the parallel POD computational code in the whole.

6 Concluding Remarks

A parallel computational code for the execution of the POD technique in fluid
dynamics is developed. The most relevant phases of the computational procedure are
analyzed and a parallelization strategy is devised. The parallel code for the Proper
Orthogonal Decomposition exhibits satisfactory levels of speed-up with an increasing
number of processors involved in the calculations, mainly because of the superlinear
behavior of some of the phases of the calculations.

A Parallel Computational Code for the Eduction of Coherent Structures of Turbulence 391

References

1. Alfonsi G., Passoni G., Pancaldo L. & Zampaglione D.: A spectral-finite difference
solution of the Navier-Stokes equations in three dimensions. Int. J. Num. Meth. Fluids. 28
(1998) 129

2. Passoni G., Alfonsi G. & Galbiati M.: Analysis of hybrid algorithms for the Navier-Stokes
equations with respect to hydrodynamic stability theory. Int. J. Num. Meth. Fluids. 38
(2002) 1069

3. Speziale C.G.: Analytical methods for the development of Reynolds-stress closures in
turbulence. Ann. Rev. Fluid Mech. 23 (1991) 107

4. Lesieur M. & Métais O.: New trends in Large-Eddy simulation of turbulence. Ann. Rev.
Fluid Mech. 28 (1996) 45

5. Moin P. & Mahesh K.: Direct Numerical Simulation: a tool in turbulence research. Ann.
Rev. Fluid Mech. 30 (1998) 539

6. Smagorinsky J.: General circulation experiments with the primitive equations. Mon.
Weather Rev. 91 (1963) 99

7. Bardina J., Ferziger J.H. & Reynolds W.C.: Improved subgrid models for large-eddy
simulation. AIAA Pap. 80-1357 (1980)

8. Kraichnan R.H.: Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33 (1976)
1521

9. Métais O. & Lesieur M.: Statistical predictability of decaying turbulence. J. Atmos. Sci. 43
(1986) 857

10. Yakhot A., Orszag S.A., Yakhot V. & Israeli M.: Renormalization group formulation of
large-eddy simulation. J. Sci. Comput. 4 (1989) 139

11. Germano M.: Turbulence, the filtering approach. J. Fluid Mech. 238 (1992) 325
12. Spalart P.R.: Direct simulation of a turbulent boundary layer up to Reθ ≈1410. J. Fluid

Mech. 187 (1988) 61
13. Passoni G., Alfonsi G., Tula G. & Cardu U.: A wavenumber parallel computational code

for the numerical integration of the Navier-Stokes equations. Parall. Comput. 25 (1999)
593

14. Passoni G., Cremonesi P. & Alfonsi G.: Analysis and implementation of a parallelization
strategy on a Navier-Stokes solver for shear flow simulations. Parall. Comput. 27 (2001)
1665

15. Fischer P.F. & Patera A.T.: Parallel simulation of viscous incompressible flows. Ann. Rev.
Fluid Mech. 26 (1994) 483

16. Cantwell B.J.: Organized motion in turbulent flow. Ann. Rev. Fluid Mech. 13 (1981) 457
17. Robinson S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech.

23 (1991) 601
18. Lumley J.L.: Stochastic tools in turbulence. Academic Press (1971)
19. Kosambi D.D.: Statistics in function space. J. Indian Math. Soc. 7 (1943) 76
20. Loéve M. : Functions aleatoire de second ordre. C. R. Acad. Sci. Paris. 220 (1945)
21. Karhunen K.: Zur spectral theorie stochastischer prozesse. Ann. Acad. Sci. Fenicae. A1

(1946) 34
22. Pougachev V.S.: General theory of the correlations of random functions. Izv. Akad. Nauk.

SSSR, Ser. Math. 17 (1953) 1401
23. Obukhov A.M.: Statistical description of continuous fields. Trans. Geophys. Int. Akad.

Nauk. SSSR. 24 (1954) 3
24. Sirovich L.: Turbulence and the dynamics of coherent structures. Parts I-III. Quart. Appl.

Math. 45 (1987) 561

392 G. Alfonsi and L. Primavera

25. Berkooz G., Holmes P. & Lumley J.L.: The Proper Orthogonal Decomposition in the
analysis of turbulent flows. Ann. Rev. Fluid Mech. 25 (1993) 539

26. Bakewell P. & Lumley J.L.: Viscous sublayer and adjacent wall region in turbulent pipe
flows. Phys. Fluids. 10 (1967) 1880

27. Aubry N., Holmes P., Lumley J.L. & Stone E.: The dynamics of coherent structures in the
wall region of a turbulent boundary layer. J. Fluid Mech. 192 (1988) 115

28. Moin P. & Moser R.D. : Characteristic-eddy decomposition of turbulence in a channel. J.
Fluid Mech. 200 (1989) 471

29. Sirovich L., Ball K.S. & Keefe L.R.: Plane waves and structures in turbulent channel flow.
Phys. Fluids. A2 (1990) 2217

30. Ball K.S., Sirovich L. & Keefe L.R.: Dynamical eigenfunction decomposition of turbulent
channel flow. Int. J. Num. Meth. Fluids. 12 (1991) 585

31. Webber G.A., Handler R.A. & Sirovich L.: The Karhunen-Loéve decomposition of
minimal channel flow. Phys. Fluids. 9 (1997) 1054

32. Press W.H., Teukolsky S.A., Vetterling W.T. & Flannery B.P.: Numerical Recipes in
Fortran 77. Cambridge University Press (1992)

Experimenting with a Multi-agent

E-Commerce Environment

Costin Bădică1, Maria Ganzha2, Marcin Paprzycki3, and Amalia Pı̂rvănescu4

1 University of Craiova, Software Engineering Department,
Bvd.Decebal 107, Craiova, 200440, Romania

badica costin@software.ucv.ro
2 Gizycko Private Higher Educational Institute,

Department of Informatics, Gizycko, Poland
ganzha@pwsz.net

3 Oklahoma State University, Computer Science Department,
Tulsa, OK, 74106, USA and

Computer Science, SWPS, 03-815 Warsaw, Poland
marcin@cs.okstate.edu

4 SoftExpert SRL,
Str.Vasile Conta, bl.U25, Craiova, Romania

amaliap@soft-expert.com

Abstract. Agent technology is often claimed to be the most natural
approach for automating e-commerce business processes. Despite these
claims, up till now, the most successful e-commerce systems are still
based on humans to make the most important decisions in various stages
of an e-commerce transaction. Consequently, it is difficult to find suc-
cessful actually implemented and working large-scale agent-based e-com-
merce applications to confirm agents superiority. Here, we discuss an ab-
stract e-commerce environment that allows agents of different types to
interact with each other and operate with an overarching goal of support-
ing an e-commerce transaction. A prototype system that implements this
vision using JADE agent platform is also described. Finally, we report
on experiments with the implemented system skeleton.

1 Introduction

E-commerce involves complex processes with many facets, spanning areas that
cover business modeling, information technology and social and legal aspects
([9]). A recent survey ([8]) pointed out to useful applications of intelligent and
mobile agents in support of advanced e-commerce. The main message perme-
ating his (and other) work is that agent technology is expected to bring effi-
ciency to businesses and thus improve its profitability (e.g. by improving the
rate of successful transactions from the total number of attempted transactions,
or by decreasing the total time required to complete a transaction), but also to
benefit individual users (e.g. by assuring ”price-optimality” of purchases or by
increasing customer satisfaction). However, taking into account the high diver-
sity of e-commerce activities involving electronic payments, business document

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 393–402, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

394 C. Bădică et al.

processing (orders, bills, requests for quotes, etc.), advertising, negotiation, user
mobility, delivery of goods, security etc., it is clear that a lot more work needs
to be done to achieve the vision of a global distributed e-commerce environment
supported by intelligent software agents. This claim is further supported by the
fact that it is almost impossible to point out to an existing (and used in day-
to-day operation) large-scale implementation of an e-commerce agent system.
While a number of possible reasons for this situation have been suggested (see,
for instance, [10]), one of them has been recently dispelled. It was shown that
modern agent environments (e.g. JADE, [7]) can easily scale to 1500 agents and
300000 messages ([3]). Since these results have been obtained on a set of 8 anti-
quated Sun workstations, it is easy to extrapolate the true scalability of JADE
on modern computers and thus it is possible to build and experiment with large-
scale agent systems. This is the general direction of agent system development
that will be addressed in this paper. If mobile and intelligent software agents
are to become an important part of the e-commerce infrastructure, we have to
start implementing such systems that involve large number of agents interacting
in a way that is to model realistic scenarios arising in an e-marketplace. This
process has to have at least two goals in mind: (1) to focus on the technical
aspects of the system, such as agent functionalities, their interactions and com-
munication, agent mobility etc., and (2) to focus on modeling the economical
processes occurring in an e-marketplace, such as: effects of pricing strategies, of
negotiation protocols and strategies, flow of commodities etc. The first goal at-
tempts to address the problem of lack of large-scale agent systems implemented
using agent environments (we are aware of large bio-inspired agent simulations
written in C, but this is not what we are interested in). Without being able to
show that it is actually possible to implement such systems, using tools that are
apparently designed with this goal in mind, agent research will never be able to
reach beyond academia. The second goal points to a possible application of the
system. While we do not try to convince anyone that as system like ours will be
immediately usable in real-life e-commerce, we can point to an interesting way to
utilize our system. This possible application is e-commerce modeling. Due to the
agent flexibility it will be relatively easy to experiment with the above described
as well as other factors appearing in various e-commerce scenarios. While both
of these developmental paths are very closely related to each other in this paper
we are more concerned with the former.

In this broad context, our goal is to create a system with a multitude of
agents that play variety of roles and interact with each-other in an abstract
e-commerce environment. Currently, we follow our earlier work, where first, we
have implemented a set of lightweight agents capable of adaptive behavior in con-
text of price negotiations (by dynamically loading appropriate software modules;
see [11] and work referenced there). Second, we have implemented a simplistic
skeleton for an e-commerce simulation ([2]). Third, we have combined these two
developmental threads into a unified e-commerce environment [12]. One of the
important limitations of our work reported thus far was the fact that we have
experimented only with a very limited number artifacts populating our system

Experimenting with a Multi-agent E-Commerce Environment 395

(products, negotiation mechanisms and strategies, agents of various types, com-
puters). The aim of this paper is to report on the results of our experiments
when the size of the system has been increased considerably. In the remaining
parts of this paper we, first, present the top level description of the system. We
follow by a summary of the implementation-specific information as well as an
example illustrating its work in a larger-scale setting.

2 System Description

In our work we aim at implementing a multi-agent e-commerce system that
in a long run will help carrying out experiments with real-world e-commerce
scenarios. In this context, note the exploratory nature of our work: the system
is based on an abstract e-commerce environment describing an artificial world
in which e-commerce agents perform variety of functions typically involved in
e-commerce, rather than on a solution to a specific business problem in terms of
a limited number of application-specific agents.

Our e-commerce model extends and builds on the e-commerce structures pre-
sented in [2] and [11]. Basically, our environment acts as a distributed market-
place that hosts e-shops and allows e-clients to visit them and purchase products.
Clients have the option to negotiate with the shops, to bid for products and to
choose the shop from which to make a purchase. Conversely, shops may be ap-
proached ”instantly” by multiple clients and consequently, through negotiation
mechanisms (including auctions), have an option to choose the buyer. At this
stage the system is under development and has a number of limitations. (1) Only
four negotiation protocols have been implemented: FIPA English auction, FIPA
Dutch auction, iterative bargaining and fixed price (also known as take-it-or-
leave-it). Note that the first two are one-to-many negotiations while the last two
are one-to-one negotiations (see [1] for a discussion on how various negotiation
mechanisms can be parameterized). (2) The two strategy modules are trivial and
are there only to show that such modules can be downloaded upon request. (3)
We have only shops that are allowed to advertise commodities (clients cannot
advertise products they are seeking). (4) While various strategies could be em-
ployed to decide where to buy from (e.g. the best price, the safest offer, the most
trusted offer, etc.), we are using only the best negotiated price. (5) We have im-
plemented only single-item negotiations. In the case of multi-item negotiations
there exist a much large number of factors influencing purchase decision. (6) Our
system can be (but is not) made adaptable through data mining (e.g. history of
buyer-seller interactions can lead to negotiation strategy adjustment). We plan
to address these serious restrictions in the near future.

Shops and clients can be created through a GUI interface that links users
(buyers and sellers) with their Personal Agents. However, these agents are in
many ways spurious for the operation of our system (especially in the context of
e-commerce modeling - goal (2) above). Furthermore, a Personal Agent is con-
sidered to be an envoy of the user that resides on her machine and represents
her interests in all aspects of e-life. Thus, in the context of our system its role

396 C. Bădică et al.

is ”only” to create Client / Shop agents that will be a part of the e-commerce
system; and therefore the Personal Agent is not further discussed. Note that it
is also possible to create Client and Shop agents via a command-line line in-
terface. This facility extremely is useful for preparing experiments via scripting
programs.

The top level conceptual architecture of the system illustrating proposed
types of agents and their interactions in a particular configuration is shown in
Figure 1. Let us now describe each agent appearing in that figure and their re-
spective functionalities.

A Client agent (CA) is created by the Personal agent to act within the mar-
ketplace on behalf of a user that attempts to buy ”something.” Similarly, a Shop
agent represents user who plans to sell ”something” within the e-marketplace.
After being created both Shop and Client agents register with the CIC agent to
be able to operate within the marketplace. Returning agents will receive their
existing IDs. In this way we provide support for the future goal of agent behav-
ior adaptability. Here, agents in the system are able to recognize status of their
counterparts and differentiate their behavior depending if this is a ”returning”
or a ”new” agent that they interact with.

There is only one Client Information Center (CIC) agent in the system (in
the future we may need to address this potential bottleneck [3]). It is respon-
sible for storing, managing and providing information about all ”participants”
existing in the system. To be able to participate in the marketplace all Shop
and Client agents must register with the CIC agent, which stores information in
the Client Information Database (CICDB). The CICDB combines the function
of client registry, by storing information about and unique IDs for all users and
of yellow pages, by storing information about of all shops known in the market-
place. Thus Client agents (new and returning) communicate with the CIC agent
to find out which stores are available in the system at any given time. In this way
we are (i) following the general philosophy of agent system development, where
each function is embodied in an agent and (ii) utilizing the publisher-subscriber
mechanism based on distributed object oriented systems. Furthermore, this ap-
proach provides us with a simple mechanism of correctly handling the concurrent
accesses to a shared repository without having to deal with typical problems of
mutual exclusion etc. Actually, all these problems are automatically handled by
JADE’s agent communication service.

A Client agent is created for each customer that is using the system. Each
Client agent creates an appropriate number of ”slave” negotiation agents with
the ”buyer role” (Buyer agents hereafter). One Buyer agent is created for each
store, within the marketplace, selling sought goods.

On the supply side, a single Shop agent is created for each merchant in the
system and it is responsible for creating a slave negotiation agent with the ”seller
role” (Seller agent hereafter) for each product sold by the merchant within her
e-store.

Finally, Database agents are responsible for performing all database oper-
ations (updates and queries). For each database in the system we create one
database agent (in the future we may need to address this possible bottleneck

Experimenting with a Multi-agent E-Commerce Environment 397

CICDB CIC

Buyer Buyer Buyer Buyer

Client Client

Seller Seller Seller Seller

Shop Shop

ShopDB ShopDB

Fig. 1. The abstract e-commerce environment (two-client; two-shop version)

[3]. In this way we decouple the actual database management activities from the
rest of the system (i.e. the database management system can be modified in any
way without affecting the agent side of the system and vice-versa). Currently,
there are two databases in the system: a single CICDB database (operated by
the CICDB agent containing the information about clients, shops and product
catalogues, and a single Shop Database (ShopDB) operated by the ShopDB agent
storing information about sales and available supplies for each merchant regis-
tered within the system.

The central part of the system operation is comprised by price negotiations.
Buyer agents negotiate price with Seller agents. For this purpose Buyer agents
migrate to the e-stores known by the CIC agent to carry sought after commodity.
In case of multiple Buyer agents attempting at purchasing the same item, they
may compete in an auction. Results of price negotiations are send by the Shop
agent to the Client agent that decides where to attempt at making a purchase.
Note that the system is fully asynchronous and thus an attempt at making a
purchase does not have to result in a success as by the time the offer is made
other Buyer agents may have already purchased the last available item. In this
way we proceed with an e-commerce model similar to the airline ticket reserva-
tion where until an actual purchase is made item is reserved, but may not be
available at a later time. Note that once the complete system is created, chang-
ing this policy will require only a limited amount of work. Furthermore, it will
be possible to add different scenarios of completing negotiations to the system
and build a mega-system, where all of these strategies will exist together. Ability
to achieve this goal by simply adding new agents with new behaviors illustrates
the power of agent-based system design.

398 C. Bădică et al.

3 Implementation and Experiments

3.1 System Implementation

The current implementation of the proposed environment has been made within
the JADE 3.3 agent platform ([7]). The main reason for this selection was the
fact that JADE is one of the best modern agent environments. JADE is open-
source, it is FIPA compliant and runs on a variety of operating systems including
Windows and Linux (and, as illustrated below, it is also possible to run JADE in
a mixed environment). Furthermore, as reported above, in [3] we have observed
its very good scalability.

JADE provides a flexible and configurable architecture that matches well
with our requirements. Negotiations between Seller and Buyer agents take place
in JADE containers. There is one Main container that hosts the CIC agent.
Users (customers and merchants) can create as many containers they need to
hold their Client and Shop agents (e.g. one container for each e-store). Buyer
agents created by Client agents use JADE mobile agent technology to migrate
to the Shop agent containers to engage in negotiations. In this context, a con-
tainer simulates a marketplace where various Seller and Buyer agents meet and
negotiate. Moreover, all these containers linked via the agent platform simulate
a bazaar filled with marketplaces filled with trading agents.

The current implementation is based on several Java classes organized into
several categories. Each category is implemented as a separate Java package.

– Agent classes. Classes of this package are used for describing various agent
types used in the system. Each agent class incorporates a subset of agent
activity classes, also called behaviors. Behaviors are used as an abstraction
that represents an atomic activity performed by an agent.

– Database classes. Classes of this package are used for describing agents that
are responsible for management of database connections.

– Negotiation classes. Classes of this package implement a simple framework
for describing various negotiation protocols. This framework uses the Initia-
tor and Participant roles, as defined by the FIPA Contract Net Interaction
protocol ([5]).

– Reasoning classes. These classes used for the implementation of the vari-
ous reasoning models employed by the negotiation agents; see [11] for more
details concerning model of negotiation agents. Our implementation sup-
ports agents that dynamically load their negotiation protocols and reasoning
modules. The implementation combines the Factory design pattern ([4]) and
dynamical loading of Java classes ([11]).

– Ontology classes. These classes are necessary for implementing agent com-
munication semantics, using concepts and relations. Current implementation
uses an extremely simple ontology that defines a single concept for describing
Client and Shop preferences including prices, product names and negotiation
protocols.

– Other classes. This package contains various helper classes.

Experimenting with a Multi-agent E-Commerce Environment 399

In our system, agent communication is implemented using FIPA ACL mes-
sages [5]. We have used the following messages: SUBSCRIBE, REQUEST,
INFORM, FAILURE, CFP, PROPOSE, ACCEPT-PROPOSAL, REJECT-
PROPOSAL, REFUSE. SUBSCRIBE messages are used by the Shop and
Client agents to register with the CIC agent and for the Buyer agents to
register (to participate in auctions) with the Seller agent. REQUEST mes-
sages are used by Client agents to query the CIC agent about what shops are
selling a specific product and for Client agents to ask the Shop agent for a
final confirmation of a transaction. INFORM messages are used as responses
to SUBSCRIBE or REQUEST messages. For example, after subscribing to
the CIC agent, a Client agent will get an INFORM message that contains its
ID, or after requesting the names of the shops that sell a specific product,
a Client agent will receive a list of the Shop agent IDs in an INFORM mes-
sage. Buyer agents are using FAILURE messages to inform the master Client
agents about the unsuccessful result of an auction. Finally, CFP, PROPOSE,
ACCEPT-PROPOSAL, REJECT-PROPOSAL and REFUSE messages are
being used by negotiating agents.

3.2 Experiments

The system can be run in a simple setting for demonstration purposes by manu-
ally creating Shop and Client agents via the GUI, or directly from command-line
when a large number of agents, containers, products etc. is to be created [6].

For the purpose of this paper we have utilized experiments involving multiple
agents residing on multiple computers. First, Client agents resided on a single
computer and Buyers migrated to Shop agents residing on the remaining 19
machines. Second, Client agents resided on 4 computers, while the remaining
16 machines contained Shop agents. Furthermore, to illustrate heterogeneity of
the environment in which our system can run, in both experimental settings the
Main container of the agent platform resided on a computer running Linux, while
the remaining 20 computers run Windows. In addition JADEs Sniffer agent also
was executed, on the Linux PC,. This agent is provided by JADE and its role
is to report on communications between agents in the system. Figure 2 presents
agent communication captured with help of this agent (note Linux environment).

In the experiment shown in Fig 2 every Shop had three different products.
Thus, at the beginning of an experimental run every Shop registered with the
CIC agent, then created 3 Sellers (one Seller for each product). Seller agents
also registered with the CIC agent and then waited for the incoming Buyer(s).
Communication involved in these operations can be seen in Fig 2. There exist
two events which are necessary for to start negotiations: appearance of at least
one Buyer and an interrupt caused by the timer (see Figure 3).

After creation, Client registered with the CIC agent. Upon user request,
it obtained list of Shops, where product(s) of interest were sold and created
Buyer agents and sends them to the selected Shops. When Buyer arrived at the
marketplace it asked about current negotiation protocol, communicated with
its Client and obtained a corresponding strategy module and waited for start

400 C. Bădică et al.

Fig. 2. The beginning of work of the system — registration with CIC and CICDB
agents

Fig. 3. The beginning of work of the system — DOS window

Experimenting with a Multi-agent E-Commerce Environment 401

of negotiations. After finishing negotiations, Seller informed Shop agent about
their results and Shop agent notified appropriate Client about successful result
of negotiations (see also Fig 2).

In the experiment represented in Fig 2 and Fig 3 we used three products,
which Client could buy. Thus, we had a total of more than 200 agents populating
the system. It should be pointed out that the most time-consuming operation
is system initialization (creation of containers). However, since containers are
created once, they have only minimal impact on the operations of the system.

We have run multiple experiments, changing the number of (a) containers,
(b) computers, (c) Clients, (d) Shops, (e) negotiation protocols, (f) products
(g) mixture of Linux and Windows environments, etc. In each case experiments
run smoothly and supported our general claim that the proposed system, when
further developed can: (1) can be scaled to a truly large size, and (2) be used
for e-commerce modeling.

4 Concluding Remarks

In this paper we have introduced an agent-based e-commerce system that has ac-
tually been implemented and show to fulfill the basic promises of agent systems.
The most important of them were: (1) system scalability, (2) flexibility, and (3)
heterogeneity. Obviously, the proposed system has a number of shortcomings
that we are aware off, and we will work vigorously to remove them and develop
and implement a truly comprehensive system. We will report on our progress in
subsequent reports.

References

1. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated
Negotiation. In: Proceedings of SELMAS’2004, LNCS 3390, Springer Verlag (2005)
213–235.

2. Chmiel, K. et al.: Agent Technology in Modelling E-Commerce Processes; Sam-
ple Implementation. In: C. Danilowicz (ed.): Multimedia and Network Information
Systems, Volume 2, Wroclaw University of Technology Press, (2004) 13–22.

3. Chmiel, K. et al.: Testing the Efficiency of JADE Agent Platform. In: Proceedings
of the 3rd International Symposium on Parallel and Distributed Computing, Cork,
Ireland, IEEE Computer Society Press, Los Alamitos, CA, (2004) 49–57.

4. Cooper, J.W.: Java Design Patterns. A Tutorial. Addison-Wesley, (2000).
5. FIPA: The foundation for intelligent physical agents. See http://www.fipa.org.
6. Ganzha, M., Paprzycki, M., P̂ırvănescu, A., Bădică, C., Abraham, A.: JADE-based

Multi-Agent E-Commerce Environment: Initial Implementation. In: Analele Uni-
versităţii din Timişoara, Seria Matematică-Informatică (to appear), (2005).

7. JADE: Java Agent Development Framework. See http://jade.cselt.it.
8. Kowalczyk, R. et al.: Integrating Mobile and Intelligent Agents. In: Advanced E-

commerce: A Survey. Agent Technologies, Infrastructures, Tools, and Applications
for E-Services, Proceedings NODe’2002 Agent-Related Workshops, Erfurt, Ger-
many, LNAI 2592, Springer Verlag, (2002) 295–313.

402 C. Bădică et al.

9. Laudon, K.C., Traver, C.G.: E-Commerce. Business, Technology, Society (2nd ed.).
Pearson Addison-Wesley, (2004).

10. Paprzycki, M., Abraham, A.: Agent Systems Today; Methodological Consider-
ations. In: Proceedings of 2003 International Conference on Management of e-
Commerce and e-Government, Jangxi Science and Technology Press, Nanchang,
China, (2003) 416–421.

11. Paprzycki, M., Abraham, A.. P̂ırvănescu, A., Bădică, C.: Implementing Agents
Capable of Dynamic Negotiations. In: Petcu, P. and Negru, V. (eds.): Proceed-
ings of SYNASC’04: Symbolic and Numeric Algorithms for Scientific Computing,
Timişoara, Romania, Mirton Press, Timişoara, Romania (2004) 369–380.

12. P̂ırvănescu, A., Bădică, C., Paprzycki, M.: Developing a JADE-based Multi-Agent
E-Commerce Environment. In: Guimarães, N. and Isáıas, P. (eds.): Proceedings
IADIS AC’05: International Conference on Applied Computing, Algarve, Portugal,
IADIS Press, Lisbon, Portugal (2005) 425–432.

A Parallel Version

for the Propagation Algorithm�

Márcio Bastos Castro, Lucas Baldo, Luiz Gustavo Fernandes, Mateus Raeder,
and Pedro Velho

Programa de Pós-Graduação em Ciência da Computação, PUCRS,
Avenida Ipiranga, 6681 - CEP 90619-900, Porto Alegre, Brazil
{mcastro, lbaldo, gustavo, mraeder, pedro}@inf.pucrs.br

Abstract. This paper presents a parallel version for the Propagation
Algorithm which belongs to the region growing family of algorithms.
The main goal of our implementation is to decrease de Propagation Al-
gorithm execution time in order to allow its use on image interpolation
applications. Our solution is oriented to low cost high performance plat-
forms such as clusters of workstations. Four different input data sets
represented by pairs of images were chosen in order to carry out experi-
mental tests. The results obtained show that our parallel version of the
Propagation Algorithm presents significant speedups.

1 Introduction

Creating virtual in-between views from two scenes of the same subject taken
from different points of view can be a very interesting tool to economize re-
sources in some practical applications [1]. One main example is typically found
in teleconferencing with limited network bandwidth. Image-based interpolation
is a method to create smooth and realistic virtual views between two original
view points. Interpolation applications are usually based on a three-phase algo-
rithm [2]: construction of a dense matching map between the original images,
separations of matched areas from unmatched ones and finally the generation of
all in-between images. The matching phase is by far the most time consuming
one of this procedure. The general technique for matching areas from different
images is called region growing. Its basic principle is the use of images charac-
teristics to group neighbor pixels and thus creating regions. In [3], a new region
growing algorithm was proposed. It is based on the construction of a quasi-dense
matching map between the two original views and it is able to perform more ac-
curate matches. Its originality consists on the adoption of a “best first” strategy
to select the next match from a set of seed matches which is updated through the
addition of each new found match from the precedent algorithm iteration. This
new algorithm was called the Propagation Algorithm, and the improvements on
the matching procedure brought together an additional computational cost. This
paper proposes a parallel version for the Propagation Algorithm. The target ar-
chitecture is a cluster of workstations and the implementation was carried out
using the standard message passing library MPI [4].
� This work was developed in collaboration with HP Brazil R&D.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 403–412, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

404 M.B. Castro et al.

The parallelization of the region growing technique has been the subject
of several different studies [5]. One of the most spread techniques is based on
the “Split and Merge” strategy [6]. On this approach, the merge phase is done
through the construction of a non-oriented graph to represent the problem. The
graph boundaries are the image regions and the connections between the extrem-
ities stand for the neighbors relation of the regions. The first parallel versions of
the regions growing algorithm based on the “Split and Merge” approach were im-
plemented over SIMD machines and dynamic structures were used to store image
regions information [7,8]. Another experimental study of the parallel versions of
the image segmentation algorithm based on the regions growing technique (also
based on the “Split and Merge” approach) was presented by [9]. On this work,
the authors propose a new version of the algorithm to determinate the connected
components of an image and a new parallel approach is presented for the merge
phase.

The paper is organized as follows. In Section 2, the image interpolation ap-
plication is reviewed, with emphasis to the propagation (region growing) algo-
rithm. After, the proposed parallel approach is described in Section 3. Section 4
presents some experimental results for four different case studies. Finally, some
concluding remarks and future directions are given in Section 5.

2 Propagation Algorithm

Before starting the Propagation Algorithm, a preparation phase is necessary to
select the seed matches. Points of interest [10] are naturally good seed point
candidates because they represent the points of the image that have the high-
est texture. These points are detected in each separated image. Next, they
are matched using the ZNCC (zero-mean normalized cross correlation) mea-
sure [3]. At the end of this phase,
a set of seed pairs is ready to be
used to bootstrap a region grow-
ing type algorithm which propa-
gates the matches in the neighbor-
hood of seed points from the most
textured pixels to the less textured
ones. The Propagation Algorithm
itself is based on a classic region
growing method for image segmen-
tation [11] which uses pixel homo-

IMAGE 1 IMAGE 2

a
A

a2

A2

a3
A3

b

c

B

C

Neighborhood 5x5

Neighborhood 3x3

Seed matches

Possible matches

Fig. 1. Neighborhood propagation

geneity. However, instead of using pixel homogeneity property, a similar measure
based on the matches correlation score is adopted. This propagation strategy
could also be justified by the fact that seed pairs are composed by points of
interest, which are the local maxima of the texture. Thus, these matches neigh-
bors are also strongly textured what allows good propagation even though they
are not local maxima. The neighborhood N5(a,A) is defined as being all pixels
within the 5x5 window centered at these two points (one window per image).

A Parallel Version for the Propagation Algorithm 405

For each neighboring pixel in the first image, a list of match candidates is con-
structed. This list consists of all pixels of a 3x3 window in the corresponding
neighborhood of the second image (see Fig. 1). The complete definition of the
neighborhood N (a, A) is given by:

N (a,A) = {(b,B), b ∈ N5(a),B ∈ N5(A), (B −A)− (b − a) ∈ {−1, 0, 1}2}.

The input of the algorithm is a set which contains the current seed pairs.
This set is implemented by a heap data structure for a faster selection of the
best pair. The output is an injective displacement mapping which contains all
the good matches found by the Propagation Algorithm. Briefly, all initial seed
pairs are starting points of concurrent propagations. At each step, a match (a, A)
with the best ZNCC score is removed from the current set of seed pairs. Then,
the algorithm looks for new matches in its match neighborhood and, when it
finds one, it is added to the current seed pairs set and also to the set of accepted
matches which is under construction.

3 Parallel Propagation

The parallel implementation for the Propagation Algorithm discussed on this
section was developed in order to allow the use of this new algorithm on realistic
situations. Thus, it was necessary to achieve better performances without using
parallel programming models oriented to very expensive (but not frequently
used) machines. Therefore, the natural choice was a cluster with a message
passing programming model.

As seen before, the Propagation
Algorithm advances by comparing
neighbors pixels through out the
source images surface. From some
seed pairs, it can form large matching
regions on both images surface. In
fact, a single seed pair can start a
propagation that grows through a large
region over the images surface. This
freedom of evolution guarantees the
algorithm to achieve good results in
terms of matched surfaces. Another
characteristic is that the algorithm is
based on global “best-first” strategy
to choose the next seed pair that will
start a new propagation, which also
has a direct effect on the final match

Image Surface

Seed Points Redundancy Matched Surfaces

Fig. 2. Redundancy problem

quality. These two characteristics are hard to deal with if one wants to propose
a parallel distributed version of the algorithm without loosing quality at the
final match. The “best-first” strategy implementation is based on a global
knowledge of the seed pairs set, which is not appropriated to a non-shared

406 M.B. Castro et al.

memory context. In addition, the freedom of evolution through out the images
surface assumes that the algorithm knows the entire surface of the images, and
this can create a situation where several processors are propagating over the
same regions at the same time creating a redundancy of computation (Fig.
2). Besides, it is not possible to know in advance how many new matches a
seed pair will generate. Thus, from a parallel point of view, the Propagation
Algorithm is an irregular and dynamic problem which exhibits unpredictable
load fluctuations. Therefore, it requires the use of some load balancing scheme
in order to achieve a more efficient parallel solution.

The parallel solution proposed in this paper is based on a master-slave
scheme. One processor will be responsible for distributing the work and cen-
tralizing the final results. The others processors will be running the Propagation
Algorithm, each one using a sub-set of the seed pairs and knowing a pair of
corresponding slices over the images surface (coordinates of target slice). The
master distributes the seed pairs over the nodes considering their location over
the slices. This procedure replaces the global “best-first” strategy by several lo-
cal “best-first” ones. Each local seed pairs sub-set is still implemented as a heap
which is ordered by the pair ZNCC score. This strategy minimizes the problem
of loosing quality at the final match.

Once the problem with the global “best-first” strategy is solved, it still re-
mains the problem of the algorithm limitation of evolution over the images sur-
face. As said before, each node can propagate just over the surface of its asso-
ciated slice in order to avoid computation redundancy. However, forbidding the
evolution out of the associated slice generates two kinds of losses. First, some
matches are not done because they are just at the border of one slice and one
of its points is placed outside it. Second, some regions in one slice may not be
reached by any propagation started by a seed pair located inside of its surface,
but instead they could be reached by a propagation started at a neighbor slice.

Such a limitation is partially solved by a technique called flexible slices. This
technique allows the Propagation Algorithm to expand through the surface of
its neighbor slices in a controlled way. As shown on Fig. 3, each processor works
over its own associated slice, but it also knows its neighbor slices and it has
the permission to propagate over them. But still, it is not interesting to leave
the Propagation Algorithm free to compute its neighbors entire surface. This
may cause the computation of too many repeated matches. To avoid that, each
processor has the permission to compute just over a percentage of its neigh-
bors surface. This percentage is related to the number of slices. A large num-
ber of slices implies in thinner slices. In this case, it is acceptable to allow a
processor to advance over a large percentage of its neighbors surfaces. On the
other hand, a small number of slices implies in larger slices. Here, the algorithm
must not propagate too much over the neighbors surface. Finally, it is impor-

A Parallel Version for the Propagation Algorithm 407

tant to mention that the master must
receive all matches generated by the
slaves and it must filter the unavoidable
duplicated ones. In order to send these
final matches to the master, each slave
has a communication buffer which is
filled progressively as the Propagation
Algorithm advances. When the buffer is
full, it is sent to the master. After that,
the slave immediately returns to its ex-
ecution. All slaves do the same proce-
dure, in a way that forces the master
to have a receiving queue. This queue
is dimensioned to avoid buffer losses by
the master. When a slave reaches the
end of its seed pairs sub-set, it sends

Image Surface

Seed Points Matched Surfaces

}
}

}
}

} 50% ext.

50% ext.

50% ext.

50% ext.

50% ext.

Slice 3

Slice 4

Slice 2

Slice 6

Slice 1

Slice 5

Fig. 3. Flexible slices approach

an incomplete buffer to the master. When the master receives an incomplete
buffer, it knows that the sender has finished its work and sends a new slice (seed
pairs sub-set) back to it (if there is still sub-sets available). Figure 4 shows the
complete flow-chart for the parallel Propagation Algorithm.

Propagation Propagation Propagation

Seed pairs local heap 1 Seed pairs local heap 2 Seed pairs local heap n

Slave 1 Slave 2 Slave nMaster

Selection

Final matches Local matches Local matches Local matches

Seed pairs global heap

Fig. 4. Flow-chart of the parallel Propagation Algorithm

The last problem to deal with in the parallelization of the Propagation Al-
gorithm is the workload distribution. If the source images are divided into more
slices than the number of nodes available, the following strategy is adopted:

1. the master divides the set of seed pairs into sub-sets based on their location
over the slices;

2. each slave receives one slice with its associated sub-set;
3. each slave computes its own sub-set of seed pairs;
4. when there is no more seed pairs to compute, the slave sends a signal to the

master;

408 M.B. Castro et al.

5. if there is some available slices remaining, the master choose a new one and
send it to the available slave.

In fact, the master has a queue of slices, organized by their position over
the images surface. In order to choose which slice will be sent to an available
slave, the master just gets the first slice of this queue. This procedure is sufficient
to avoid the workload unbalance problem originated by the different amount of
seed matches each slice has.

4 Experimental Results

In order to perform the experimental tests of the parallel implementation of the
Propagation Algorithm, four case studies were selected. Table 1 presents the size
of the images that compose those case studies with their respective sequential
execution times obtained using a Pentium III 1 Ghz with 256 MB RAM.

Table 1. Execution times for the sequential Propagation Algorithm

Image Flower House Rock Trunk

Size (pxs) 368x384 768x512 512x768 360x240

Propagation time (s) 6.32 15.24 14.32 3.20

Each pair of images shows specific characteristics. The Flower pair is the only
one based on non-realistic images. Both, the House and the Rock pairs have the
same size, but the House pair has more textured regions and presents occluded
elements. Finally, the Trunk pair is the only one based on a gray scale of colors
and it has the smallest number of textured regions. This set of input images is
clearly not exhaustive, but the pairs of images were carefully chosen to make it
possible to verify the the parallel Propagation Algorithm behavior on different
situations.

For all input images, experimental tests were carried out varying on the
number of processors1(N), number of slices per slave (fine grain and coarse
grain) and the redundancy extension allowed over the slices. The number of
slices per slaves is obtained by 2 ×N (coarse grain) and by 3 ×N (fine grain).
Moreover, the slices redundancy extension used was 30% and 100% of the slices
height. Figure 5 shows the speedup, execution time (T) and efficiency (E) of
the parallel Propagation Algorithm for each case study. The experimental tests
showed that, for all input images pairs, our parallel implementation achieved
an execution time reduction about 81% (� 79.26% for the Rock, � 80.01%
for the Trunk, � 81.49% for the House and � 83.86 for the Flower) using 9
processors. On the other hand, all executions carried out with more than 9
processors presented a significant lost of performance.
1 The target architecture was a cluster with 8 nodes Pentium III 1 Ghz dual and 256

MB RAM connected by a 100 Mb Fast-Ethernet network.

A Parallel Version for the Propagation Algorithm 409

 1

 2

 3

 4

 5

 6

 7

 3 4 5 6 7 8 9

sp
ee

d−
up

number of processors

Flower

(a) ext. = 1.0, slices = 2
(b) ext. = 1.0, slices = 3
(c) ext. = 0.3, slices = 2
(d) ext. = 0.3, slices = 3

ideal

 1

 2

 3

 4

 5

 6

 7

 3 4 5 6 7 8 9

sp
ee

d−
up

number of processors

Trunk

(a) ext. = 1.0, slices = 2
(b) ext. = 1.0, slices = 3
(c) ext. = 0.3, slices = 2
(d) ext. = 0.3, slices = 3

ideal

number of processors
3 4 5 6 7 8 9

(a)
T 4.75 3.31 2.90 2.82 2.62 2.26 1.66
E 44.35 47.73 43.59 37.35 34.46 34.96 42.30

(b)
T 4.14 4.23 3.07 2.87 2.45 2.01 1.42
E 50.89 37.35 41.17 36.70 36.85 39.30 49.45

(c)
T 3.62 3.17 2.19 1.89 1.60 1.20 1.02
E 58.20 49.84 57.72 55.73 56.43 65.83 68.85

(d)
T 3.62 3.10 2.51 2.30 2.01 1.31 1.09
E 58.20 50.97 50.36 45.80 44.92 60.31 64.42

number of processors
3 4 5 6 7 8 9

(a)
T 2.32 2.12 1.55 1.33 1.18 1.08 1.00
E 45.98 37.74 41.29 40.10 38.74 37.04 35.56

(b)
T 2.60 2.45 2.33 2.12 1.58 1.44 1.20
E 41.03 32.65 27.47 25.16 28.93 27.78 29.63

(c)
T 2.37 2.21 1.03 0.90 0.82 0.78 0.64
E 45.01 36.20 62.14 59.26 55.75 51.28 55.56

(d)
T 2.40 2.32 2.20 1.98 1.30 1.02 0.89
E 44.44 34.48 29.09 26.94 35.16 39.22 39.95

 1

 2

 3

 4

 5

 6

 7

 3 4 5 6 7 8 9

sp
ee

d−
up

number of processors

House

(a) ext. = 1.0, slices = 2
(b) ext. = 1.0, slices = 3
(c) ext. = 0.3, slices = 2
(d) ext. = 0.3, slices = 3

ideal

 1

 2

 3

 4

 5

 6

 7

 3 4 5 6 7 8 9

sp
ee

d−
up

number of processors

Rock

(a) ext. = 1.0, slices = 2
(b) ext. = 1.0, slices = 3
(c) ext. = 0.3, slices = 2
(d) ext. = 0.3, slices = 3

ideal

number of processors
3 4 5 6 7 8 9

(a)
T 12.84 11.96 10.20 8.12 7.38 5.83 5.05
E 39.56 31.86 29.88 31.28 29.50 32.68 33.53

(b)
T 12.66 9.85 8.84 7.77 6.95 6.06 4.77
E 40.13 38.68 34.48 32.69 31.33 31.44 35.50

(c)
T 11.44 9.08 6.74 5.76 4.74 4.37 2.99
E 44.41 41.96 45.22 44.10 45.93 43.59 56.63

(d)
T 11.13 9.25 6.79 5.40 4.61 4.08 2.82
E 45.64 41.19 44.89 47.04 47.23 46.69 60.05

number of processors
3 4 5 6 7 8 9

(a)
T 14.10 12.91 10.85 8.32 6.93 6.09 4.87
E 33.85 27.73 26.40 28.69 29.52 29.39 32.67

(b)
T 13.84 12.95 10.62 7.82 6.91 5.77 4.57
E 34.49 27.64 26.97 30.52 29.61 31.02 34.82

(c)
T 10.54 8.84 7.68 5.51 5.10 4.15 2.97
E 45.29 40.50 37.29 43.32 40.11 43.13 53.57

(d)
T 10.55 9.23 7.05 5.47 4.52 4.02 3.09
E 45.24 38.79 40.62 43.63 45.26 44.53 51.49

Fig. 5. Results: speedup, execution time (T, in seconds) and efficiency (E, in %)

The analysis of the curves on the graphs of Fig. 5, one can clearly identify
that the 30% of redundancy extension always results in a better efficiency. This
result was expected, since with a lower redundancy allowed there are less pairs to
match. We could then expect even better results with less than 30% extension,
however this is not possible due to the lost of matches at boundaries of each slice
what compromises the final match quality.

Examples of the parallel Propagation Algorithm output for each case study
((a) Flower, (b) House, (c) Rock and (d) Trunk) can be visualized at Fig.6. The

410 M.B. Castro et al.

(a) Flower

(b) House

(c) Rock

(d) Trunk

Fig. 6. Output of the parallel Propagation Algorithm for each case study

A Parallel Version for the Propagation Algorithm 411

squared regions in both images of each pair show the extension of the matched
regions obtained from the seed matches. Readers can notice that the Propagation
Algorithm advances better over the textured surfaces. Regions like the sky in the
Trunk pair or the grass in the House pair were not matched due to absence of
texture. Furthermore, some regions on the images boundaries cannot be matched
because they do not appear in both views.

5 Conclusions

The implementation of a parallel version for the Propagation Algorithm was pre-
sented in this paper. The particularity of this algorithm consists on the adoption
of a “best first” strategy to select the next match from a set of seed matches
firing several propagations that can advance over the same images zones gener-
ating a large redundancy in the computation of the seed matches. Our parallel
version is based on a master/slave scheme and we proposed a new technique
called flexible slices to solve the redundancy problem. Several experiments were
carried out in order to verify the usability of our approach and the results present
a significant gain of performance. Finally, it is the authors opinion that the work
developed so far was worthwhile. The results obtained are interesting and the
implementation allowed a quite good understanding of the problem, leading to
promising directions for further investigations.

References

1. Seitz, S., Dyer, C.: Physically-Valid View Synthesis by Image Interpolation. In:
Proceedings of the International Workshop on Representations of Visual Scenes,
Cambridge, Massachussets, USA (1995) 26–33

2. Lhuillier, M., Quan, L.: Image Interpolation by Joint View Triangulation. In: Pro-
ceedings of the International Conference on Computer Vision and Pattern Recog-
nition, Fort Collins, Colorado, USA (1999) 139–145

3. Lhuillier, M., Quan, L.: Robust Dense Matching using Local and Global Geomet-
ric Constraints. In: Proceedings of the 15th International Conference on Pattern
Recognition. (2000) 968–972

4. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: the complete
reference. MIT Press (1996)

5. Alnuweiri, H., Prasanna, V.: Parallel architectures and algorithms for image com-
ponent labeling. IEEE Trans. Patt. Anal. Machine Intell. 14 (1992) pp. 1014–1034

6. Horowitz, S., Pavlidis, T.: Picture segmentation by a directed split-and-merge
procedure. In: Proceedings of the 2nd International Joint Conference on Pattern
Recognition. (1974) pp. 424–433

7. Tilton, J.: Image segmentation by iterative parallel region growing with applica-
tions to data compression and image analysis. In: Proceedings of the 2nd Sympo-
sium on the Frontiers of Massively Parallel Computation. (1988) pp. 357–360

8. Willebeck-LeMair, M., Reeves, A.: Solving non-uniform problems on simd comput-
ers: case study on region growing. Journal of Paralle and Distributed Computing
8 (1990) pp. 135–149

412 M.B. Castro et al.

9. Jájá, J., Bader, D., Harwood, D., Davis, L.: Parallel algorithms for image enhance-
ment and segmentation by region growing with an experimental study. Technical
report, Institute for Advanced Computer Studies, University of Maryland (1995)

10. Schimid, C., Mohr, R., Bauckhage, C.: Comparing and Evaluating Interest Points.
In: Proceedings of the 6th International Conference on Computer Vision, Bombay,
India (1998) 230–235

11. Monga, O.: An Optimal Region Growing Algorithm for Image Segmentation. Inter-
national Journal of Pattern Recognition and Artificial Intelligence 1 (1987) 351–375

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 413 – 419, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Parallelization Techniques for Multidimensional
Hypercomplex Discrete Fourier Transform

Marina Chicheva1, Marat Aliev2, and Alexey Yershov3

1 Image Processing Systems Institute of the RAS; 443001, Molodogvardeiskaya st. 151,
Samara, Russia

+7 (8462) 320094, +7 (8462) 325620
2 dygeya State University; 352700, Universitetskaya st. 208, Maikop,

Adygeya Republic, Russia
+7 (87722) 70273

3 Samara State University; 443011, Academik Pavlov st. 1, Samara, Russia
+7 (8462) 345402

mchi@smr.ru, marat@adygnet.ru, yershov@ssu.samara.ru

Abstract. We consider techniques for parallelization of the multidimensional
hypercomplex discrete Fourier transform. There are two potentials for parallel
algorithm synthesis: specific structural properties of hypercomplex algebra and
inner parallelism of multidimensional Cooley-Tukey scheme. Both approaches
are developed; results of their experimental research are shown.

1 Introduction

The multidimensional hypercomplex discrete Fourier transform (HDFT) [1] of real
signal, given by

() ()
1

1
,

1 1
,..., 0

,..., ,...,

d

N

d d
n n

F m m f n n W
−

< >

=
= m n , ,

1

k k
d

m n
k

k

W w< >

=
=∏m n , 1N

kw = (1)

has increasingly been in the focus of attention of those working in image and multi-
dimensional signal processing. A number of publications by the Russian and foreign
researchers are devoted to the HDFT applications (see [3], [4], [5]).

The characteristic feature of the transform (1) is that the N-th roots kw from unity

are found in different sub-algebras isomorphic to complex algebra C of some 2d alge-
bra dB . Accordingly, the spectrum values ()1,..., dF m m are found in algebra dB . In

the two-dimensional case (d=2), the transform (1) takes the form:

() () 1 1 2 2

1 2

1 1

1 2 1 2 1 2
0 0

, , ,
N N

m n m n

n n

F m m f n n w w
− −

= =
= 1 20 , 1m m N≤ ≤ − , (2)

where { }12
1 exp Nw πε= , { }22

2 exp Nw πε= , 1ε , 2ε ()2 2
1 2 1ε = ε = − are the constitu-

ent elements of some four-dimensional hypercomplex algebra, with its arbitrary element
defined as

M. Chicheva, M. Aliev, and A. Yershov 414

1 2 1 2z = α + βε + γε + δε ε . (3)

Note that the classical discrete Fourier transform is a particular case of the trans-
form (1) at 1 ... d iε = = ε = ∈C . Thus, we can state that besides a variety of special

applications discussed in Refs. [3], [4], [5], the transform (1) provides an effective
instrument for solving the entire scope of problems in digital signal processing, which
rely upon the discrete Fourier transform (fast calculation of discrete convolutions,
filtration, signal compression, etc.)

As noted in Ref. [1], the only principal property that determines the efficiency of
the HDFT's applied use is not the specific structure of hypercomplex algebra dB , but

the existence of a sufficient number of isomorphic copies of complex algebra in it. In
Ref. [1] it was proved that the minimal number of real operations required for addi-
tion/multiplication of elements in dB is achieved at

12

...
d

d
−

≅ ⊕ ⊕ ⊕1442443B C C C
(4)

Besides, in Refs. [1], [2] an automorphism system is constructed, an algorithm for
fast multiplication of algebra dB elements developed, and sequential HDFT algo-

rithms are synthesized.

2 Parallel HDFT Algorithm Based on Hypercomplex Algebra

When implementing a multidimensional transform, a major problem is increasing
computational effort with increasing dimensionality. A natural way of resolving the
problem is parallel implementation of the transform (1). It stands to reason that a
principal feasibility of such a parallelization is incorporated in the representation (4).
Besides, additional opportunities for increasing the algorithm's parallelism and effi-
ciency are offered by the inner parallelism of the Cooley-Tukey scheme, an analog of
which is used for generating the hypercomplex spectrum.

Below, principles on which the algorithm is based are exemplified by the 2D trans-
form. Let an arbitrary element z of four-dimensional algebra 2B be defined by the

relation (3).
Introduce the change of variables:

0 1 21u = + ε ε , 1 1 21u = − ε ε , 2 1 2u = ε − ε , 3 1 2u = ε + ε .

Then, the hypercomplex number z is given by

() () () ()()1
0 1 2 32

.z u u u u= α + δ + α − δ + β − γ + β + γ (5)

Obviously, for an arbitrary 2z ∈B the change to (5) will call for four real addi-

tions. However, for the real (input signal) and complex (the roots kw) numbers such

a change does not require performing non-trivial arithmetic operations.

Parallelization Techniques for Multidimensional HDFT 415

The inverse change to the original representation also calls for four real additions
per hypercomplex spectrum pixel.

The multiplication rules for the new basis elements are given in Table 1.

Table 1. Multiplication rules for the basis elements

 0u 1u 2u 3u

0u 02u 0 22u 0

1u 0 12u 0 32u

2u 22u 0 02u− 0

3u 0 32u 0 12u−

It should be noted that in the above representation, the products of the elements 0u

and 2u by the elements 1u and 3u are equal to zero. This implies that with such a

representation the calculation of a product of two hypercomplex numbers consists in
two entirely independent procedures. Instead of the product

()()0 1 2 3 0 1 2 3xu yu zu vu u u u u+ + + α + β + γ + δ

it will suffice to independently calculate two products:

()() () ()()0 2 0 2 0 22 ,xu zu u u x z u x z u+ α + γ = α − γ + γ + α

()() () ()()1 3 1 3 1 32 .yu vu u u y v u y v u+ β + δ = β − δ + δ + β

Thus, the most cumbersome algorithm's operation - calculation of the product of
hypercomplex numbers - can be parallelized into two independent branches which do
not require data exchange. Thus, per-operation time will be reduced by nearly twice.

The structure of the sequential fast HDFT algorithm [1] is such that the representa-
tion (5) allows the calculation to be completely separated by the same principle. As a
result, the parallel algorithm of the 2D HDFT is as follows:

− change from the original representation (3) to the representation (5);
− data distribution between two processors;
− taking the transform (2) using algorithms of Cooley-Tukey type [2];
− hypercomplex spectrum reconstruction.

The processing in two-dimensional case is illustrated by the Fig.1. During the talk
the authors propose to discuss the case of an arbitrary dimension d.

The main advantage of the proposed algorithm is essential decrease of computa-
tional complexity of next operations:

− addition of hypercomplex numbers in 12d− times;

− multiplication of complex root by hypercomplex number in 12d− times;
− multiplication of two arbitrary hypercomplex numbers for d=2 in more than 3

times, for an arbitrary d – in ()12 2 1 3d d− + times.

M. Chicheva, M. Aliev, and A. Yershov 416

Besides, it is saved an important feature of sequential algorithm that is the use the
symmetric properties of real signal hypercomplex spectrum (see, for example, [1],
[2]). But to use the symmetry it is required to carry out additional data exchange, re-
sulting in slight decrease of parallelization general efficiency.

II

Operation cycle
Timeout

I

Processor number

Time
D mappingata

Fig. 1. Illustration of processor workloads for parallelization based on algebra properties (two-
dimensional case)

3 Parallelization Using the Decomposition Structure

The above-described approach allows synthesis of a parallel algorithm for the d-

dimensional HDFT paralleled between 12d− processors. Accordingly, the algorithm's

speed up will not exceed the value of 12d− . With a greater number of processors
available, it is expedient to implement an additional parallelization due to the multi-
dimensional Cooley-Tukey decomposition structure. The data and computation distri-
bution principle is exemplified below by a two-dimensional transform.

The basic relationship for "the radix 2" decomposition of the HDFT (2) [2] takes
the form:

() () 1 2
1

1 2 1, 2 1 2
, 0

, am bm
ab

a b

F m m F m m w w
=

= % (6)

where

() () () ()2 1 1 2 2

1 2

1
2 2

1 2 1 2 1 2
, 0

, 2 ,2 .

N
m n m n

ab
n n

F m m f n a n b w w
−

=
= + +%

The key operation of the algorithm is the reconstruction (6) of the complete spec-

trum ()1 2,F m m from the known (derived) values of partial spectra ()1 2, abF m m% .

Assume that every partial spectrum has been calculated on a separate processor. Note
that the processing time will be approximately the same for all the processors because
the spectrum array sizes and the calculation algorithms are the same. Then, every
processor performs multiplications of the partial spectra elements by the power of the

Parallelization Techniques for Multidimensional HDFT 417

roots 1 2,w w . Then, the values derived are transferred to a processor where the hy-

percomplex spectrum is finally formed.
It stands to reason that in this way the process can be parallelized between any

number of processors divisible by four by using several decomposition steps of type
(6). The expected time of the hypercomplex spectrum computation is in inverse pro-
portion to the number of processors because the major computation effort is ac-
counted for the computation of the smaller-size HDFTs. For the data dimensionality

2d > , a similar scheme involving stepwise parallelization between 2d processors can
be applied.

Fig.2 illustrates the described algorithm for two-dimensional case and one step of
decomposition fulfilled.

I

IV

II

III

Operation cycle
Timeout

Processor number

Time
D mappingata

Fig. 2. Illustration of processor workloads for parallelization based on decomposition structure
(two-dimensional case, one decomposition step)

The advantage of this approach is twofold reduction of transmitted data volume
due to symmetry of hypercomplex spectrum of real signal.

4 Experimental Studies

To date, we have implemented and studied the parallel algorithms of two-dimensional
hypercomplex discrete Fourier transform based on both algebra properties and de-
composition structure, and also the combined algorithm. Below the parallelization
results are given for next cases specified in table 2, where p is the required processor
number.

The studies were conducted on the cluster of the Moscow State University R&D
Computer Center (RDCC MSU), which consists of 16 two-processor nodes on the
Pentium III platform, integrated into a high-speed network SCI. Fig. 3 shows the pro-
gram execution time pT (in seconds) as a function of N, where N×N is the two-

dimensional HDFT size.
Tables 3 shows the experimentally derived values of the algorithm's speed up,

1 pU T T= , and efficiency, 1 pE T pT= .

M. Chicheva, M. Aliev, and A. Yershov 418

Table 2. List of examined algorithms

p Algorithm
1 Sequential algorithm
2 Algorithm based on algebra properties
4 Algorithm based on decomposition structure (1 step)
8 Combined algorithm
16 Algorithm based on decomposition structure (1 steps)

t, c

60

40

20

0
0 512 1024 2048

N

p=2
p=1

p=4
p=8
p=16

Fig. 3. Computation time for the N×N – HDFT

Table 3. Algorithm's speed up and efficiency

 Speed up Efficiency

N p=2 p=4 p=8 p=16 p=2 p=4 p=8 p=16
128 1,805 2,261 4,082 6,545 0,903 0,565 0,510 0,409
256 1,802 2,795 5,035 6,444 0,901 0,699 0,629 0,403
512 1,790 2,372 4,246 6,382 0,895 0,593 0,531 0,399
1024 1,803 2,925 5,274 6,577 0,902 0,731 0,659 0,411
2048 1,791 2,725 4,881 7,243 0,896 0,681 0,610 0,453

5 Conclusions

Thus, in the presented paper the synthesis principles for parallel algorithms of hyper-
complex DFT are developed. Two ways of DFT parallelization are implemented. The
best efficiency was reached during parallelization based on structural properties of the
algebra (≈90%). The efficiency of parallelization based on Cooley-Tukey scheme
and combined algorithm amounts to 40-73%. Efficiency decrease with increasing
processors' number is connected with decreasing part of simultaneous calculation of
partial spectra, which gives the main effect. Obtained results allow us to conclude that

Parallelization Techniques for Multidimensional HDFT 419

if number of dimensions will increase at limited number of processors the approach
used structure of multidimensional hypercomplex algebra is the most preferable.

Acknowledgements

The work was financially supported by RF Ministry of Education, Samara Region
Administration and U.S. Civilian Research & Development Foundation (CRDF Pro-
ject SA-014-02) as part of the joint Russian-American program "Basic Research and
Higher Education" (BRHE); and by Russian Foundation for Basic Research (RFBR),
grants # 03-01-00736, #05-01-96501.

References

1. Aliev, M.V. Chernov V.M.: Two-dimensional FFT-like algorithms with overlapping. Opti-
cal Memory and Neural Networks (Information Optics), Vol. 11, No. 1 (2002) 29-38.

2. Aliev, M.V.: Synthesis of two-dimensional DFT algorithms in the hypercomplex algebra.
Pattern recognition and image analysis, Vol. 13, No. 1 (2003) 61-63.

3. Furman, Ya.A., Krevetskii, A.V., Peredreev, A.K.: An introduction to contour analysis:
applications to image and signal processing. FIZMATLIT, Moscow (2002) (in Russian)

4. Geometric Computing with Clifford Algebra (Sommer G. (Ed.)). Springer Series in Infor-
mation Sciences. Springer-Verlag, Berlin (2001)

5. Labunets, E.V., Labunets, V.G., Egiazarian, K., Astola, J.: Hypercomplex moments applica-
tion in invariant image recognition. Int. Conf. On Image Processing 98 (1998) 256–261

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 420 – 432, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Implementation of the Matrix Multiplication
Algorithm SUMMA in mpF∗

Alexey Kalinov, Ilya Ledovskikh, Mikhail Posypkin, Zakhar Levchenko,
and Vladimir Chizhov

Institute for System Programming of the Russian Academy of Sciences,
109004, 25 B.Kommunisticheskaya str. Moscow, Russia

{ka, il, posypkin}@ispras.ru

Abstract. In this paper, we present a new parallel Fortran extension called mpF.
The language based on both data and task parallelism allows explicit
specification of data and computations distribution. We discuss some reasons
for the language design and demonstrate the basic mpF features on an example
of the parallel matrix multiplication algorithm SUMMA. The mpF
implementation is compared with its MPI counterpart.

1 Introduction

There are two extremes of parallel programming. The first one is the use of a
sequential language and a parallelizing compiler. It is the most comfortable approach
for application developers but the least efficient. The second one is the use of a
sequential language and the basic level libraries for synchronization and access to
data. It is potentially the most efficient but the least comfortable approach.

The most common architecture for parallel computing now is distributed memory
systems. The following approaches to the extremes: High Performance Fortran (HPF)
[1] and Message Passing Interface (MPI) [2] are the most commonly used for parallel
programming such systems now. HPF is easy in use but in general inefficient [3].
MPI is efficient but hard to use.

A parallel programming language called mpF [4] is an attempt to develop a parallel
extension of Fortran 90 being a golden mean between easiness in use and efficiency.
It was developed on base of experience of development and use of the mpC parallel
programming language [5,6]. Both languages were developed in Institute for System
Programming of the Russian Academy of Sciences. The important features of the
mpF and the mpC are that they support efficiently portable parallel programming of
heterogeneous platform and mixed data and task parallelism.

The language features are demonstrated on an example implementation of Scalable
Universal Matrix Multiplication Algorithm (SUMMA) proposed in [7]. It was chosen
for demonstration of mpF because this efficient and scalable algorithm is the base of
the matrix multiplication algorithm in widely used parallel library ScaLAPACK [8]

∗ This research is supported by Computational and Information Aspects of Solving Large

Problems program of the Division of Mathematical Sciences of the Russian Academy of
Sciences.

 An Implementation of the Matrix Multiplication Algorithm SUMMA in mpF 421

and its elegant MPI implementation is presented in [7] as an example, demonstrating
the power of MPI for coding concurrent algorithms. Moreover the algorithm is
intended to execution with heterogeneous distribution of data between processes.

The main contribution of the paper is presentation of the mpF implementation of
the algorithm SUMMA and its comparison with the MPI counterpart. The mpF
parallel programming language is introduced as well.

The rest of the paper is organized as follows. In section 2 we present our
motivation of the language design. Section 3 introduces algorithm SUMMA. Its
implementation in mpF is presented in section 4. In section 5 we compare mpF and
MPI implementations. Section 6 concludes the paper.

2 Motivation of the Language Design

Fortran is still the main programming language for scientific and technical
applications. Language dialects known as Fortran 90, Fortran 95, and defined by the
new published standard ISO/IEC 1539-1:2004, are enough suitable for development
of efficient and portable programs for sequential architectures, vector and superscalar
computers, and for shared memory systems. These Fortran dialects support data
parallel programming for SMP computers because provide whole array expressions,
functions and assignment, and executable constructs like FORALL loop. Such
language facilities allow both development of efficient programs and generation of
efficient parallel target code. Automatic parallelization of source code is also possible
for architectures listed above, and the existing parallelizing compilers can be
successfully used for development of real-life applications. On the other hand,
development of such parallelizing compiler is still the complicated and labor-
consuming task.

The situation in area of applications for distributed memory systems (MPP
computers) is different. Both automatic parallelization of sequential source code (we
call it compiler approach) and array expressions and constructs do not allow yet
producing an efficient parallel target code for wide class of applications. The existing
parallelizing compilers still are prototypes, which stay far from the industrial level.

Presently two approaches are used for development of the real-life computational
applications for MPPs: message passing libraries (library approach), or parallel
extensions of Fortran (language approach) Library approach is very flexible and
efficient, but looks to be tedious and error-prone for development of large and
complex applications. Language approach based on data- or task parallelism is much
more easy-to-use for development of computational applications.

The most widespread parallel extensions of Fortran are initially based on data
parallelism and use the implicit approach to distribution of data and computations –
parallelism is specified by the set of compiler directives. With exception of such
compiler directives (designed usually as Fortran comments) the program is still the
sequential Fortran program and can be developed and debugged on uniprocessors.
Examples of such implicitly data parallel languages are HPF 1.1[9], Fortran D[10],
Fortran DVM[11]. Data parallel languages allow the efficient implementation for big
set of computational algorithms. But these languages do neither support
heterogeneous computing and task parallelism.

422 A. Kalinov et al.

On the other hand, the Fortran M language [12] is based on explicit task
parallelism. The corresponding extensions of FORTRAN 77 are made in syntax of
statements. The Fortran M program can be efficiently compiled for both distributed
and shared memory systems. The language allows to specify the virtual computer
(processor array), and its topology may differ from the size and shape of the physical
multiprocessor. The mapping is performed using language constructs, which influence
the programs performance but not correctness. It means, the programmer can develop
his/her application on uniprocessor workstation and then tune performance on parallel
system by changing mapping constructs. But the absence of data parallel constructs
makes Fortran M almost similar (from the users point of view) to Fortran with MPI
calls.

Thus, there is a need in Fortran language extension for MPP computers, suitable
for efficient programming of wide class of applications. This language has to support
both data- and task-parallel programming paradigms. Additionally, this language
should be easy-to-use for the programmer, on the one hand, and not too complicated
for the efficient implementation, on the other hand. The evolution of HPF (HPF 2.0)
[1] and Fortran D (Fortran D95)[10] is directed to combination of data- and task-
parallel facilities in one language. Thus, the set of parallel algorithms that can be
efficiently implemented is extended, but additional extensions of such big language
make it more and more complicated in use and in implementation.

The library approach to extension of data-parallel language also can be
successfully applied to combine data- and task parallelism in one system. An example
of such approach is HPF/MPI [13] – an HPF binding for Message Passing Interface,
that allows making parallel applications consisting of different groups of processes.
Processes of each group correspond to some data-parallel task that is coded in HPF;
MPI calls are used for interaction between process groups. The portable
implementation of HPF/MPI provides a significant speedup for many applications in
comparison to pure HPF. It is necessary to say that such extension inherits not only
benefits, but also drawbacks of low-level library approach – developers time
consumption and debugging difficulties. Also, because the extended language is HPF,
the problem of generation of efficient parallel code for data-parallel tasks is not
eliminated.

In our opinion the implementation complexity of existing Fortran dialects and its
relatively low flexibility are conditioned on implicit approach to data parallelism. The
user has facilities to specify data distribution only, and compiler is responsible for
extracting of efficient communication pattern. On the contrary, the library approach
mentioned above is explicit but hard to use.

The proposed Fortran extension [4] is based on explicitly parallel approach and
includes both data- and task parallelism. During design of the language called mpF
we had used the principal concepts of the mpC language [5,6]. At that we worked for
three goals: first, to provide high performance for wide class of applications; second,
to make the extension not too big and easy in use; third, to raise the application
reliability by means of language facilities. Like mpC mpF is aimed at efficient
programming of irregular applications and allows obtaining good speedup on
heterogeneous computing systems. Withal, the proposed Fortran extension is compact
and introduces only some new entities and most new constructs are designed in

 An Implementation of the Matrix Multiplication Algorithm SUMMA in mpF 423

traditional Fortran style and spirit. We choose for extension Fortran 90 as the simplest
version of Fortran with whole array operations.

3 Scalable Universal Matrix Multiplication Algorithm SUMMA

Let us consider the formation of the matrix products CABC βα += . We assume that

each matrix X is of dimension XX nm × , { }CBAX ,,∈ . Naturally, there are

constraints on these dimensions: mmm CA == , kmn BA == , nnn CB == . We
consider processes of the parallel program as cr × grid. The rcp = nodes are

indexed by their row and column index and the),(ji node will be denoted by ijP .

We consider two dimensional data decompositions with the following assignment

of data to nodes: Given XX nm × matrix X , { }CBAX ,,∈ , and an cr × logical

process grid, we partition as follows:

=

−−−

−

)1)(1(0)1(

)1(000

...

......

...

pqq

p

XX

XX

X ,

and assign ijX to process ijP . Submatrix ijX has dimensions X
j

X
i nm × , with

= XX
i mm and = XX

i nn .

For simplicity, we will take 0,1 == βα in our algorithm description. If ija , ijb

and ijc denote the),(ji element of the matrices, respectively, then the elements of

C are given by
−

=

=
1

0

k

l
ljilij bac .

Notice that rows of C are computed from rows of A , and columns of C are
computed from columns of B . We hence restrict data decomposition so that rows of
A and C are assigned to the same row of nodes and columns of B and C are

assigned to the same column of nodes. Hence,
A
i

C
i mm = and

B
j

C
j nn =

.
Let us consider what computation is required to form ijC

()

j

i

B

jP

j

j
A

Qiiiij

B

B

B

AAAC

~

)1(

1

0~

)1(10 ...
|...||=

−

− .

Note that iA
~

 is entirely assigned to node row i , while jB
~

 is entirely assigned to

node column j . Letting

424 A. Kalinov et al.

() =−=

−
Tj

k

Tj

Tj

j
iiii

b

b

b

BkaaaA

1

1

0

10

...

~1~|...|~|~~

we see that

−

=

=
1

0

~~
k

l

j
l

l
iij

T

baC .

Hence the matrix-matrix multiply can be formulated as a sequence of rank-one
updates.

It now suffices to parallelize each rank-one update. Pseudo-code for this, executed
simultaneously on all nodes ijP looks as follows:

ijC = 0

for l=0, k-1

 broadcast l
ia~ within node row i

 broadcast j
lb

~
 within node column j

 ijC = ijC +
Tj

l
l
i ba

~~ ⋅

endfor

The process is illustrated in Fig. 1.
Further improvements can be obtained by observing that reformulating the method

in terms of matrix-matrix multiplications instead of rank-one updates can greatly

Fig. 1. Operations implementing the inner loop of matrix multiplication of a 2x3 grid of nodes

la0
~

la1
~

0~
lb 1~

lb 2~
lb

T

l
lbaC 0
000

~~=+

T

l
lbaC 0
110

~~=+

T

l
lbaC 1
001

~~=+

T

l
lbaC 1
111

~~=+

T

l
lbaC 2
002

~~=+

T

l
lbaC 2
112

~~=+

 An Implementation of the Matrix Multiplication Algorithm SUMMA in mpF 425

improve the performance of an individual node and reduce communication overhead.

In our explanation, each column l
ia~ became a panel of columns and row j

lb
~

a corresponding panel of rows.
Algorithm SUMMA is based on an implementation of the broadcast as passing of a

message around the logical ring that forms the row or column. This allows pipelining
computations and communications and making the algorithm scalable. The proof of the
scalability as well as MPI code for the pipelined blocked algorithm is presented in [7].

4 Implementation of the SUMMA in mpF

In this section we present the mpF implementation of the algorithm SUMMA
equivalent to the MPI implementation presented in [7].

module grid_nettype !1
! two dimensional grid !2
 nettype grid(p,q) !3
 integer p,q !4
 coord(p,q) !5
 end nettype !6
end module !7
 !8
subroutine pdgemm(&!9
 net, &!network argument !10
 p, q, &!network dimensions !11
 m, n, k, &!global matrix dimensions !12
 nbl, &!panel width !13
 alpha, &!multiplication constant !14
 a, &!array that holds local part of matrix A !15
 lda, &!leading dimension of a !16
 b, &!array that holds local part of matrix B !17
 ldb, &!leading dimension of b !18
 beta, &!multiplication constant !19
 c, &!array that holds local part of matrix C !20
 ldc, &!leading dimension of c !21
 ma, na, &!dimensions of blocks of A !22
 mb, nb, &!dimensions of blocks of B !23
 mc, nc, &!dimensions of blocks of C !24
 w1, w2) !work arrays !25
 use grid_nettype !26
 nettype(grid(p,q)) net !27
 integer, replicated :: p,q,m,n,k,ma,na,mb,nb,mc,nc !28
 dimension ma(p), na(q), mb(p), nb(q), mc(p), nc(q) !29
 double precision a(lda,*),b(ldb,*),c(ldc,*),w1(*),w2(*) !30
 replicated kk=1,iwrk,icr=1,icc=1,ii=1,jj=1,ic,ir,l,len !31
 double precision d_one=1.0 !32
 subnet (net), allocatable :: s1(:,:) !33
 distribution (s1) :: l,len !34
 !35
 m1=1.coordof.net !my row in network !36
 m2=2.coordof.net !my column in network !37
! C=beta*C !38

426 A. Kalinov et al.

 c[1:mc(m1),1:nc(m2)]=c[1:mc(m1),1:nc(m2)]*beta !39
 main_loop: do while(kk.le.k) !40
 iwrk=min(nbl,mb(icr)-ii,na(icc)-jj) !41
 A_panels_bcast: do ir=1,p !42
 allocate (s1(ir:ir,q)) !43
 region(s1) block !44
! pack current iwrk columns of A into w1 on node (ir,icc) !45
 len=ma(ir)*iwrk !46
 region(s1(:,icc:icc)) &!47
 w1(1:len)=reshape(a(1:ma(ir),jj:jj+iwrk),(/len/)) !48
! ring broadcast w1 within row ir !49
 do l=icc,icc+q-2 !50
 (net(ir,mod(l+1,q)))(w1(1:len))= &!51
 (net(ir,mod(l,q)))(w1(1:len)) !52
 end do !53
 end region !54
 deallocate (s1) !55
 end do A_panels_bcast !56
 B_panels_bcast: do ic=1,q !57
 allocate (s1(p,ic:ic)) !58
 region(s1) block !59
! pack current iwrk rows of B into w2 on node (icr,ic) !60
 len=nb(ic)*iwrk !61
 region(s1(icr:icr,:)) &!62
 w2(1:len)=reshape(b(ii:ii+iwrk,1:nb(ic)),(/len/)) !63
! ring broadcast w2 within column ic !64
 do l=icr,icr+p-2 !65
 (net(mod(l+1,p),ic))(w2(1:len))= &!66
 (net(mod(l,p),ic))(w2(1:len)) !67
 end do !68
 end region !69
 deallocate (s1) !70
 end do B_panels_bcast !71
! update local block !72
 call dgemm("N","N",mc(m1),nc(m2),iwrk,alpha, &!73
 w1,mb(m1),w2,iwrk,d_one,c,ldc) !74
! update icr, icc, ii, jj, kk !75
 ii=ii+iwrk !76
 jj=jj+iwrk !77
 if(jj.gt.na(icc)) then icc=icc+1; jj=1; endif !78
 if(ii.gt.mb(icr)) then icr=icr+1; ii=1; endif !79
 kk=kk+iwrk !80
 end do main_loop !81
 return !82
end !83

In mpF, the concept of the computing space is introduced. It is defined as a set of
virtual processors (nodes), which may have different performance. Subsets of the
computing space (called regions of the computing space) are used to distribute data,
evaluate expressions, and execute statements. The computing space is managed via
network objects or simply networks. Their network types characterize networks.

 An Implementation of the Matrix Multiplication Algorithm SUMMA in mpF 427

Lines 1-7 contain the definition of module grid_nettype, which holds the
definition of network type grid. This network type (lines 3-6) describes two-
dimensional networks consisting of p*q nodes with two-dimensional coordinate
system. The nodes have the first coordinate ranging from 1 through p and the second
coordinate ranging from 1 through q.

Data object distributed over a region of the computing space comprises a set of
components of the same type so that any node of the region holds just one component.

In mpF, procedures (subroutines and functions) are divided into two classes: nodal
and distributed procedures. Nodal procedures are executed by individual nodes of the
computing space region. All subroutines and functions of Fortran 90 (including the
intrinsic ones) are nodal procedures in mpF.

Nodes of a certain region of the computing space execute distributed subroutines
and functions. The notion of distributed procedures is specific for task parallel
languages. Syntactically, distributed procedures do not differ from nodal ones. The
difference is in the list of formal parameters. In addition to the parameters with the
names interpreted in the conventional Fortran way, any distributed subroutine or
function must have exactly one network parameter. The name of this parameter is the
name of a user-defined (in the scope of the procedure or outside it) network or an
intrinsic network.

The subroutine pdgemm implementing algorithm SUMMA is an example of
distributed procedure. Besides usual Fortran 90 formal parameters (lines 11-25) it has
network parameter net (line 10). By default all formal parameters and data defined in
the scope of the subroutine are distributed over the network net, which is defined in
line 27 as a two-dimensional pxq grid of nodes.

Line 31 defines replicated variables. Distributed data object is called replicated if
the values of all its components are identical.

An expression can be evaluated by a single node or by a region of the computing
space. In the latter case, the expression is called distributed, and the region on which
the expression is evaluated is called the expression distribution region.

There are three types of distributed expressions:

- An asynchronous expression does not require any communication between the
nodes of the computing space for its evaluation; in fact, the evaluation of such
an expression decomposes into independent computations performed at the
nodes of the expression distribution region.

- A synchronous expression requires the communication between the nodes of
the computing space for its evaluation.

- All components of replicated expressions value are equal. Replicated
expressions can be both synchronous and asynchronous.

A network can be treat as an array of nodes. A network section (or simply
subnetwork) is referenced in the way similar to an array section in Fortran. In
distinction with array sections subnetworks can have names. A network or subnetwork
can be declared as allocatable. Similar to allocatable arrays allocatable networks and
subnetworks are expected to be allocated later in the program by respective
ALLOCATE statement.

Line 33 defines the allocatable subnetwork s1 of the network net.

428 A. Kalinov et al.

Line 34 defines distribution of the variables len and l over the subnetwork s1.
Note, that by default all other variables are distributed over the network net.

Lines 36 and 37 assign values of the first and second coordinates of the node in the
network net to the distributed variables m1 and m2 respectively. The right parts of
the assignments contain the binary operation .COORDOF.. The right-hand operand of
.COORDOF. specifies the region of the computing space, and the left-hand operand
specifies the dimension of the right-hand operand. The result of .COORDOF. is the
distributed integer value with the components equal to the corresponding coordinate
of the node that stores these components. .COORDOF. is an asynchronous operation
and assignments in lines 36-37 are asynchronous statements.

The asynchronous statement in line 39 performs local update ijij CC β= . All nodes

of the network net perform this update in parallel.
Lines 40-81 express the main loop of the algorithm. It is finished when the index of

the current row/column panel kk became greater then k.
Line 41 computes width of the current panels iwrk. It is computed so that the

current panel of the matrix A belongs to the one node column and the current panel of
the matrix B belongs to the one node row. Here nbl is default panel width,
mb(icr) is the number of rows of matrix B distributed to the current node row,
icr, ii is the number of the rows from this row nodes have been processed,
na(icc) is the number of columns of matrix A distributed to the current node
column icc, jj is the number of the columns from this column nodes have been
processed.

The DO construct in lines 42-56 broadcasts current panel of matrix A over logical
ring. The DO statement in line 42 iterates the node rows.

Line 43 allocates the subnetwork s1 consisting of the nodes of the ir-th node row
of the network net. To ensure correctness of the subnetwork allocation the coordinate
expressions of the allocate statement must be replicated over the network net.

The REGION construct in lines 44-54 specifies that nodes of the ir-th node row
execute code in lines 45-53. So, nodes of the different rows independently in parallel
execute all computations inside the construct.

Line 45 compute the number of the elements in the part of current panel of matrix
A distributed to the nodes of the ir-th node row.

The REGION statement in lines 47-48 specifies that the statement in line 48 is
executed on the node with coordinates (ir,icc). The assignment in line 48 copies
part of the current panel belonging to the node into one-dimensional buffer w1.

The DO construct in lines 50-53 performs passing of the buffer w1 around node
row ir. The assignment in lines 51-52 copies first len elements of the buffer w1 on
the node with coordinates (ir,mod(l,q)) to the buffer w1 on the node with
coordinates (ir,mod(l+1,q)). Note that it is important that coordinate expressions
specifying distribution of left and right parts of the assignment must be replicated over
subnetwork s1.

The assignment in lines 51-52 is synchronous. Therefore enclosing constructs DO
(lines 50-53), REGION (lines 44–54), DO (lines 42–56), and DO (lines 40–81) are
synchronous as well. It is crucial that all nodes executing the DO constructs execute
exactly the same number of iterations. This is ensured with requirements that logical

 An Implementation of the Matrix Multiplication Algorithm SUMMA in mpF 429

expressions in loop control of the loop in lines 50-53 must be replicated over the
subnetwork s1 and the ones of the loops in lines 42-56 and 40-81 must be replicated
over the network net.

The line 55 deallocates the subnetwork s1.
Similar to the code in lines 42-56 the code in lines 57-71 broadcasts current panel

of matrix B over logical ring.
Lines 73-74 call BLAS [14] subroutine dgemm for the sequential matrix

multiplication to perform the local update
Tj

l
l
iijij baCC

~~ ⋅⋅+= α in parallel.

Lines 76-80 update the variables used for the main loop execution control.

5 Comparison with MPI

This section discusses benefits of parallel programming in mpF over parallel
programming in MPI and compares efficiency of mpF and MPI implementations of
SUMMA algorithm.

5.1 Writing in mpF Versus Using MPI

Mainly a program written in mpF differs from a program written in MPI in the way
work splitting and interactions among parallel processes are specified.
Communications part of the SUMMA performs broadcast of the current panel of the
matrices A and B over logical ring. Let us compare implementation of the broadcast
of the current panel of the matrix A using mpF (lines 42-56 in example above) and
MPI below.

Suppose that separate communicator comm corresponds to each row of the node
grid. MPI implementation looks as follows:

 len=ma(m1)*iwrk !mpi1
 if(m2.eq.icc) &!mpi2
 w1(1:len)=reshape(a(1:ma(m1),jj:jj+iwrk),(/len/)) !mpi3
 if(mod(m2+1,q).ne.icc) &!mpi6
 call mpi_send(w1,len, MPI_DOUBLE_PRECISION, &!mpi4
 mod(m2+1,q),tag,comm,ierr) !mpi5
 if(m2.ne.icc) &!mpi7
 call mpi_recv(w1,len,MPI_DOUBLE_PRECISION, &!mpi8
 mod(m2-1+q,q),tag,comm,status,ierr) !mpi9

Note, that mpF implementation requires two DO constructs, ALLOCATE and

DEALLOCATE statements, REGION construct and statement, and three assignments:
for computing number of elements in buffer, for coping of the part of the current panel
to the buffer w1, and for buffer exchange between nodes to express the broadcast.
MPI implementations requires three IF statement, two assignments: for computing
number of elements in buffer, and for coping of the part of the current panel to the
buffer w1, and two call to MPI procedures to buffer exchange between processes to
express the broadcast in Fortran 90 with call to MPI procedures. So the number of
statements in the mpF implementation is even more then number of statements in the

430 A. Kalinov et al.

MPI implementation. So it may seem that mpF language has no advantages over
programming in MPI.

The main advantages we can point here correspond to the possibility to detect a
wide class of errors in compile time.

- Communications in mpF are expressed with assignment statement. Therefore
types and distributions of variable and expression (the left and the right parts of
the assignment) can be checked. Expressions in distribution specifiers of the
left and the right parts of the synchronous assignments must be replicated. This
ensures the absence of deadlocks in mpF programs.

- One of the main source of hard to detect errors in MPI programs is violation of
replication, that is equality of the values of the expression components in case
that it is supposed. For example, in fragment of MPI code above it is supposed
that the values of expressions m1, ma(m1) are the same for all processes of the
same column of grid nodes, and the value of iwrk, icc, jj, and q are the
same for all processes participating in computations. Violation of those
conditions leads to incorrect MPI program behavior that can be detected on
debugging stage only. In mpF, most if not all of replication violations will be
detected in compile time.

- Semantics of the REGION statement in mpF fragment (lines 47-48) is the same
as semantics of the IF statement (lines 2-3) in MPI fragment. Distribution
specifier in REGION statement as well as logical expression in IF statement
specifies which nodes/processes should execute the copying of the part of the
current panel to the one-dimensional buffer. But Fortran 90 compiler does not
know anything about this semantics and cannot check corresponding errors.
Those errors can be detected on debugging stage only. On the contrary the
information from the REGION construct or statement allows mpF compiler to
check correctness of the distribution of the computations and communications.
For example, if the statement in lines 51-52 of mpF implementation looks as

 (net(ir,mod(l+1,q)))(w1(1:len))= &!51
 (net(ir,mod(l,q+1)))(w1(1:len)) !52
the mpF compiler detect an error because nodes with coordinates
(ir,mod(l,q+1)) do not belongs to the subnetwork s1.

5.2 Experimental Comparison of mpF and MPI Counterparts

Two implementations of SUMMA were compared on example of multiplication of
two 2000x2000 dense matrices on square grid of processes of dimension varied from
1 (one process) to 10 (100 processes) on supercomputer cluster MVS-1000M: MPI
implementation presented in [7] and mpF implementation presented in this paper. The
cluster installed in Joint Supercomputer Center of the Russian Academy of Sciences
consists of 384 dual Alpha21264A nodes interconnected via Myrinet
(http://www.jscc.ru). For sequential matrix multiplication we use dgemm BLAS
subroutine (implementation from http://www.netlib.org/blas/).

Fig. 2 presents speedup of mpF and MPI implementations. One can see that the
both implementations demonstrate super linear speedup. The most likely reason of
super linearity is specific of the used BLAS implementation.

 An Implementation of the Matrix Multiplication Algorithm SUMMA in mpF 431

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

dimension of squire process mesh

speedup

mpi

mpf

Fig. 2. Speedup obtained for MPI and mpF implementations on 2000x2000 matrix
multiplication on square process grid as function of grid dimension on a cluster of dual
Alpha21264A interconnected via Myrinet

1

1.02

1.04

1.06

1.08

1.1

1 2 3 4 5 6 7 8 9 10

dimension of squire process mesh

tmpF/tmpi

Fig. 3. A ratio of time of mpF implementation to time of MPI implementation for 2000x2000
matrix multiplication on square process grid as function of grid dimension on a cluster of dual
Alpha21264A interconnected via Myrinet

Fig. 3 presents a ratio of time of mpF implementation to time of MPI
implementation. The average ratio is 1.06.

Results presented on fig. 2 and fig. 3 allows us to say that subroutine of matrix
multiplication implemented in high level parallel programming language mpF is
insignificantly less efficient that its counterpart implemented in Fortran with call to
low level message-passing library MPI.

432 A. Kalinov et al.

6 Conclusions

We present implementation of matrix multiplication algorithm in the parallel
programming language mpF. The algorithm has communication pattern, which rather
cannot be extracted from data parallel Fortran extensions. So we demonstrate
expressive power of the mpF.

We also stress attention to notion of replicated variables and expressions in the
mpF language. Using replicated expressions in parallel assignments, distribution
specifiers and control expressions of execution control constructs and statements
avoids a lot of potential errors in parallel program.

The language combines task and data parallel programming paradigms. Notion of
distributed procedures and possibility to specify distribution of computations with
REGION construct explicitly is specific to task parallelism. Possibility to specify
distribution of data and extract the information about distribution of computations
from distribution of data is specific to data parallelism.

We show that mpF implementation of the nontrivial parallel algorithm demonstrate
practically the same efficiency as the MPI implementation.

So we demonstrate that mpF is easy enough in use and efficient parallel
programming language.

References

1. High Performance Fortran Forum. High Performance Fortran Language Specification,
Version 2.0 (Rice University, Houston, 1997), http://dacnet.rice.edu/Depts/CRPC/HPFF/
versions/hpf2/hpf-v20/index.html.

2. Message Passing Interface Forum. MPI: A Message Passing Interface Standard, Version
1.1, June, 1995, www.mpi-forum.org/docs/docs.html.

3. Report on the 1998 HPF Users Group’s annual meeting. Porto, Portugal: IEEE Comput.
Sci & Eng. 1998. V.5(3) 92-93.

4. A. Kalinov and I. Ledovskih: An Extension of Fortran for High Performance Parallel
Computing, Programming and Computer Software, Vol. 30, No. 4 (2004) 209–217.
Translated from Programmirovanie, Vol. 30, No. 4, 2004.

5. A.Lastovetsky: Parallel Computing on Heterogeneous Networks, John Wiley & Sons (2003)
6. http://www.ispras.ru/~mpc
7. R. van de Geijn and J. Watts. SUMMA: Scalable Universal Matrix Multiplication

Algorithm. Concurrency: Practice and Experience, 9(4) 255-274 (1997)
8. Blackford, L.S., Choi, J., Cleary, A., d’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,

Hanmmarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R.C.,
ScaLAPACK User’s Guide, Philadelphia: SIAM, 1997.

9. High Performance Fortran Forum. High Performance Fortran Language Specification,
Version 1.1 (Rice University, Houston, 1994)

10. The D System Home Page: http://www.cs.rice.edu/~dsystem/
11. DVM System: http://www.keldysh.ru/pages/dvm/
12. I.Foster, R.Olson, and S.Tuecke: Programming in Fortran M, Version 2.0 (Argonne

National Lab., August 1994).
13. I.Foster, D.R.Kohr, R.Krishnaiyer, A.Choudhary: A Library-Based Approach to Task

Parallelism in a Data-Parallel Language, Journal of Parallel and Distributed Computing,
vol.45, 148-158, Sept. 1997.

14. J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling: A set of Level 3 Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software vol. 16, 1-17 (1990)

The Parallel Implementation of the Algorithm

Solution of Model for Two-Phase Cluster in
Liquids�

V.D. Korneev1, V.A. Vshivkov1, G.G. Lazareva1, and V.K. Kedrinskii2

1 ICMMG SB RAS, Novosibirsk, Russia
{korneev, vsh, lazareva}@ssd.sscc.ru

2 LIH SB RAS, Novosibirsk, Russia
kedr@hidro.nsc.ru

Abstract. The new parallel algorithm has been developed and imple-
mented for solving the axial-symmetric problem of the interaction of a
plane shock wave with a free bubble system (cluster) resulting in the
formation of a stationary oscillating shock wave. The important charac-
teristics of the problem in question, such as acceleration, effectiveness,
and the influence of heterogeneity on the time of calculation have been
experimentally obtained. They enable us to evaluate the quality of the
algorithm and the scope for obtaining appreciable results. With the use
of the parallel algorithm discussed, the dynamics of the pressure fields
in a distant zone of a cluster is investigated, including the pressure field
of the shock wave radiated by a bubble cluster. It is fairly difficult over
a reasonable period of time to obtain results of such an investigation in
one computer due to the large size of the problem under consideration.

1 Introduction

Generation of pressure pulses in liquid and gases has been the subject of ongo-
ing research for many years. This work resulted in the development of various
pressure generators and shock-wave comulation methods. Research efforts were
focused on the exploration of media in which the energy transferred by relatively
weak pulsed loading can be absorbed, consentrated in a local region, and reemit-
ted in a pulse of substantially higher amplitude. In [1], the model developed by
Iordanskii, Kogarko, and van Wijngaarden was used in numerical studies to show
that interaction between a plane shock wave and a bubble cluster gives rise to a
shock wave with a pressure gradient tangent to its curved front. By focusing such
a wave, its amplitude can be increased by one or two orders of magnitude. As
another example of waves focusing in an axially symmetric geometry, processes
taking place in interaction between a plane shock wave and a toroidal bubble
cluster. The results of numerical study of near-axis wave structure was presented
for a focusing shock wave emitted by a bubble cluster in [2].
� Supported by the Siberian Division of the Russian Academy of Sciences, Integration

project no. 22.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 433–445, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

434 V.D. Korneev et al.

This paper proposes the new parallel algorithm of the axially symmetric
problem of the interaction of the plane shock wave with a free bubble system
(the toroidal cluster) resulting in the formation in the liquid of a stationary os-
cillating shock wave. The new approach to parallelization of the algorithm of the
given problem is considered; The basic characteristics of the parallel algorithm,
obtained for different sizes of a computer system, different sizes of a bubble
cluster and different sizes of a problem are presented; The corresponding graphs
of the numerical experiments are plotted; The results of solution to a concrete
problem, obtained on the supercomputer system MVS1000 are presented; The
new results when solving the problem of the interaction of the plane shock wave
with a toroidal cluster have been obtained; Analysis of the wave field structure
in a distant zone of a cluster for three sets of geometrical parameters of the
toroidal bubble cluster was made; The improved values of the pressure dynam-
ics when the Mach disk is propagating along the axis for large time intervals
have been obtained. This paper proposes the new parallel algorithm of the ax-
ially symmetric problem of the interaction of the plane shock wave with a free
bubble system (the toroidal cluster) resulting in the formation in the liquid of a
stationary oscillating shock wave.

The new approach to parallelization of the algorithm of the given problem is
considered. The basic characteristics of the parallel algorithm, obtained for dif-
ferent sizes of a computer system, different sizes of a bubble cluster and different
sizes of a problem are presented. The corresponding graphs of the numerical
experiments are plotted. The results of solution to a concrete problem, obtained
on the supercomputer system MVS1000 are presented. The new results when
solving the problem of the interaction of the plane shock wave with a toroidal
cluster have been obtained. Analysis of the wave field structure in a distant zone
of a cluster for three sets of geometrical parameters of the toroidal bubble cluster
was made. The improved values of the pressure dynamics when the Mach disk
is propagating along the axis for large time intervals have been obtained.

2 Statement of the Problem and Governing Equations

We consider the shock wave generated by piston motion at the end of a shock
tube of radius rst filled with a liquid at the moment t = 0. The shock tube
contains a toroidal bubble cluster whose center is located on the shock-tube axis
(denoted by z) at distance lcl from its left boundary. The plane of the base
circle of the torus (hereinafter called the toric plane), which has a radius Rtor

(Rtor < rst), is perpendicular to the shock-tube axis. he cross-sectional radius
of the torus is Rcirc (see Fig. 1). The initial volume fractin of the gas phase
in the cluster is denoted by k0. All gas bubbles have equal radii Rb, and their
distribution over a cluster is uniform. At t > 0, the shock wave propagates along
the positive z axis, interacts with the toroidal bubble cloud, bypassed around it,
and is refracted as it encounters the cluster.

The focusing of the refracted wave by the cluster was computed by using a
modified Iordanskii-Kogarko-van Wijngaarden model [1], based on the continuity

The Parallel Implementation of the Algorithm Solution of Model 435

Fig. 1. Toroidal Bubble cluster: the hatched area is the toric section; z is the symmetry
axis

and momentum equations written for the average pressure p, density ρ, and
velocity u :

∂ρ

∂t
+ div(ρu) = 0,

∂u

∂t
+ u(∇u) = −1

ρ
∇p, (1)

p = p(ρ) = 1 +
ρoc

2
o

npo

[(
ρ

1− k

)n

− 1
]

, k =
k0

1− k0
ρβ3,

where ρ0 is unperturbed liquid density, c0 is the speed of sound in liquid, and
the ρ is the density of the bubble liquid normalized to the ρ0. It is obvious that
systen (1) is not closed: the Tait equation of state for the liquid phase contains
the volume fraction k of gas in the cluster, which is expressed in terms of the
dynamic variable β = R/R0 (relative bubble radius).

In the Iordanskii-Kogarko-van Wijngaarden model, a physically heteroge-
neous medium is treated as homogeneous, and the Rayleigh equation for β:

∂S

∂t
= − 3

2β
S2 − C1

β2
− C2

S

β2
− p

β
+ β−3γ , (2)

where

S =
∂β

∂t
, C1 =

2σ

R0p0
, C2 =

4μ

R0
√

p0ρ0
,

is used as a closure for system (1). Here, σ is surface tension; μ is viscosity;
n = 7.15; and p0, ρ0, R0,

√
p0/ρ0, and R0

√
ρ0/p0, are the reference parameters

used to obtain a dimensionless system of equations.

436 V.D. Korneev et al.

3 Parallelization of the Solution Algorithm of the
Problem

The computer system MVS1000 is a system with the distributed memory. Such
systems are primarily intended for computing the MPMD- and the SPMD-
programming models. As is known, the problems that are solved by finite dif-
ference methods can be effectively parallelized in the computer systems with
the distributed memory using the SPMD- programming models or by the data
decomposition method [3 - 9]. It is this method that is applied for the paral-
lelization of the algorithm of the problem in question.

According to the definition given in Section 2, the computation model of
the problem in question consists of the bulk of a homogeneous liquid medium
and a bubble cluster included in it. Both the liquid medium and the bubble
cluster ”contribute” differently to the total time of calculation. Therefore, in
order to reveal the features of a parallel algorithm it is necessary to determine
the characteristics of the algorithm for computer systems of different size, for
clusters of different size, and for the problems with different number of points.

3.1 The Computational Domain

The medium domain is set as a 2D rectangle of size Xm ∗ Ym (in centimeters).
The bubble cluster domain is a 2D domain of a design configuration. The bubble
cluster domain is included into the medium domain.

In the domain of the medium a uniform rectangular grid is set that defines the
computational domain of the medium (hereinafter: ”medium domain” instead
of ”computational domain of the medium”). The grid has Nm ∗Km nodes along
the coordinates r and Z, respectively. The same computational grid is used for
the bubble cluster in the sub-domain of the medium domain where the cluster
is located.

Three medium variables and one variable of the bubble cluster are calculated
by the explicit five-point ”cross” stencil. When all the other variables are calcu-
lated at the grid points during the k+1-th time step, the values of variables are
only used that have already been obtained during the k-th time step.

3.2 Parallelization of the Algorithm

As stated above, the parallelization of the solution algorithm of the problem is
carried out by the method of decomposition of computational domains when both
the medium domain and the bubble cluster domain are divided into sub-domains,
and these sub-domains are distributed among the processors of the computing
system (multi-computer). The size and configuration of the sub-domains of the
decomposed domains are automatically calculated at each processor according
to the variables of these sub-domains and the value P that is equal to the number
of the processors in the multi-computer. Both the decomposition of the medium
domain and the decomposition of the bubble cluster domain have their own
salient features.

The Parallel Implementation of the Algorithm Solution of Model 437

Decomposition of the Computational Domain of the Medium. The computa-
tional domain of the medium is segmented into equal bands along the coordinate
Z. The size of the bands is calculated by the following formula: Km/P ∗ Nm

where P is the number of processors in the multi-computer. That is, the domain
is segmented along the direction of the plane wave propagation. Since the com-
putational domain of the medium is represented by the values of 10 variables
calculated at the grid points, all the arrays are cut into sub-arrays in accord
with the segmentation of the domain. The arrays calculated by the five-point
”cross” stencil are decomposed with the overlap of the values of the adjacent
points of the boundary sub-domains. Decomposition of the other arrays is car-
ried on without overlapping the boundary sub-domains. All parts of the arrays
corresponding to these sub-domains are then distributed among the processors
of the multi-computer.

Decomposition of the Computational Domain of the Bubble Cluster. The
computational domain of the bubble cluster is segmented into bands along the
coordinate Z as is the case with the medium domain (hereinafter: ”cluster do-
main” instead of ” computational domain of the bubble cluster”). The cutting
lines of the cluster domain are specified by the cutting lines of the medium do-
main and coincide with them completely. The width of the bands in the medium
domain depends on the number of processors P . As the cluster domain depends
on the medium domain, the sizes of the sub-domains of the decomposed cluster
domain and their configurations will be quite different for different values of
P . The sub-domains of the decomposed cluster domain are distributed among
the processors together with the corresponding sub-domains of the medium, to
which the cluster is bound. Therefore, in the first place, the cluster sub-domains
will not be distributed among all the processors, and, in the second place, the
size and configuration of the cluster sub-domains allocated to the processors will
be different. The processors to which the decomposed cluster sub-domains are
allocated are to be able to simulate these parts of the cluster in their memory.
In this case, the simulation is to be carried out automatically with different cut-
tings of this cluster. In the original sequential algorithm, the size of the bubble
cluster, its configuration and location in the medium are set in a special way,
by means of the variables. Every processor determines the cluster sub-domains
by the cutting lines of the medium domain. The decomposition algorithm of the
cluster domain is universal, and it is independent of the size and configuration
of the cluster.

All the three arrays of the values of the variables determining the cluster do-
main are segmented into sub-arrays according to the segmentation of the medium
domain. The array calculated by the ”cross” stencil is decomposed with the over-
lap of the values at the adjacent points of the boundary sub-domains. The other
arrays are decomposed without overlapping the boundary sub-domains.

3.3 Topology of the Computer System

It is known that the topology of a computer system is determined by the struc-
ture of the algorithm of a problem. In the case under consideration the topology

438 V.D. Korneev et al.

is determined by the data structure, as the algorithm is parallelized by the data.
The data in the algorithm are segmented into bands, and the data exchange in
the course of calculation only happens between the adjacent bands. Therefore,
the linear topology of the computer system is sufficient for the problem solu-
tion. The bands of the decomposed medium domain are sequentially distributed
among the processors according to their numbers. The band with the smallest
coordinates of the grid points locates at the 0-th processor, the one with the
bigger coordinates - at the 1-st processor, etc. The band with the biggest grid
coordinates locates at the last processor. The sub-domains of the bubble cluster
are distributed among the processors according to the bands of the medium, in
which they are found.

The specified boundary conditions of the computational domain of the medium
along the coordinate Z are evaluated for the 0-th and the last processors, the
boundary conditions along the coordinate r being evaluated for all the proces-
sors.

3.4 Acceleration and Efficiency of the Parallel Algorithm

When developing a parallel algorithm, it is important to be aware of the poten-
tialities of the acceleration of calculations and of the amount of time needed to
organize the interactions between the parallel branches of the algorithm. It is
also important to know the efficiency indexes that allow us to compare the given
algorithm with other parallel algorithms. These indexes also allow us to evaluate
the quality of the algorithm in terms of the consumption of time needed for the
data communication between the processors.

The acceleration index of a parallel algorithm in the computer system with
P > 1 processors (hereinafter: P > 1) according to [3] will be assessed by the
following value

Up =
T1

Tp
, (3)

where T1 is the computational time of a sequential algorithm in one processor,
and Tp - the computational time of a parallel algorithm in the computer system
with Pprocessors.

The efficiency of parallelization in the computer system with P processors
will be assessed by the following value:

Fp =
Tpc

Tpc + Tpv + Tps
, (4)

where Tpc is the computational time in the computer system with Pprocessors;
Tpv is the total time used for the data communication between the processors
of the same system, Tps - the total time needed for the synchronization of the
branches of a parallel program.

The medium domain and the cluster domain differently affect the total time
of calculations because these two domains are different in size and have a different

The Parallel Implementation of the Algorithm Solution of Model 439

number of the major parameters. Therefore, for a better verification of the main
characteristics of a parallel algorithm two variants of testing procedures are
considered: - in the first variant the size of the cluster domain remains constant,
and the size of a computer system varies; - in the second variant the size of a
computer system remains constant, and the size of the cluster domain varies.

In the first variant testing is carried out for two medium domains of different
size.

Acceleration and Efficiency of the Parallel Algorithm When Calculat-
ing in the Systems of Different Size. This Section presents the results of
the first variant of testing the parallel algorithm of the problem under study.
In this variant, the characteristics of the algorithm are determined, in the first
place, for two different sizes of the medium domain, and, in the second place, for
two types of calculations in each of these domains. These two types of calcula-
tions are: 1) calculations for the medium with the cluster included in it, and 2)
calculations for the homogeneous medium only. In practice, the cluster domain
can differ in size. That is why, when calculating in the homogeneous medium
without a cluster, the characteristics of the parallel algorithm are limiting for
the problem as a whole. One more index is discussed here, the index of relative
acceleration:

Up,2p =
Tp

T2p

This index means the following: by what value the algorithm acceleration will
change if the number of processors in the system is doubled.

Testing was carried out in the computer system MVS1000 with a different
number of processors: one, two, four, eight, sixteen and thirty-two processors.
The parallel programming system MPI [12, 13] was used. Two medium domains
of different size were tested: O1 and O2. The size of the medium domain O1

was equal to Nm ∗ Km = 320 ∗ 3200 grid points along the coordinates r and
Z, respectively. The medium domain O2 was twice as large and was equal to
Nm ∗ Km = 640 ∗ 3200 grid points along the same coordinates. The cluster
domain was the same for all the cases and represented a circle of 20∗ 103 points.

Here the indexes Up, Fp, Up,2p and the total time of the problem solution Tp

for calculations in the homogeneous medium O1 will be denoted as Uo1
p , F o1

p ,
Uo1

p,2p and T o1
p , and for calculations with a cluster in the same medium - as Uk1

p ,
F k1

p , Uk1
p,2p and T k1

p . For calculations in the homogeneous medium O2 we will use
the following notations for the same indexes: Uo2

p , F o2
p , Uo2

p,2p and T o2
p . While for

calculations in the same medium with a cluster the indexes will be Uk2
p , F k2

p ,
Uk2

p,2p and T k2
p .

Below we present the following plots of characteristics of a parallel algorithm
when computing with the use of a different number of processors: 1) plots for the
acceleration indexes Uo1

p , Uk1
p and Uo2

p , Uk2
p ; 2) plots for the efficiency indexes

F o1
p , F k1

p and F o2
p , F k2

p ; 3) plots for the acceleration indexes Uo1
p,2p, Uk1

p,2p and
Uo2

p,2p, Uk2
p,2p; 4) plots for the time allotted for the problem solution T o1

p , T k1
p and

T o2
p , T k2

p .

440 V.D. Korneev et al.

Fig. 2. Plots for the acceleration indexes of the algorithm for two types of calculations
in medium O1 when computing with the use of a different number of processors

The acceleration indexes Uo1
p (see Fig. 2) appeared to be sufficiently good,

for example, Uo1
2 = 1, 8, Uo1

32 = 22. That is, when using two processors the speed
of the algorithm is almost twice as large as compared to one processor. And,
when the multi-computer has thirty-two processors the speed of the algorithm
becomes 32 times as large.

The indexes Uo1
p are limiting for Uk1

p , i.e., the smaller the cluster domain,
the closer the plots Uk1

p to the plots Uo1
p . Acceleration indexes of both types of

calculations in the medium O2 are close to those in the medium O1. We would
remind you that O2 is twice as large as O1.

In the plot (see Fig. 3), the efficiency indexes show what extra time is taken
in order to send data from one processor to another. As is evident from the plot,
when the number of processors in the computer system increases, the efficiency
of parallel calculations gradually decreases. For systems consisting of two or
more processors, the communication channels between them essentially affect
the speed of data exchange and, consequently, the total time of calculations.
As follows from (2), the plot shows that time needed for parallel interactions
relatively increases when the size of the computer system grows.

It should be noted that the plots for the efficiency indexes of the algorithm
for calculations in the medium O2 are similar to the plots presented in Figure 3.

The plots of the relative acceleration indexes Up,2p for different types of
calculations (see Fig. 4) are also indicative. They help to answer the following
question: how many times does the speed of calculations increase if the size of a
computer system is doubled? As is clear from the plots if there are 32 processors
in a system instead of 16, then the acceleration Uo1

p,2p only increases by the
factor of 1.65, and the acceleration Uk1

p,2p - by the factor of 1.57. These plots

The Parallel Implementation of the Algorithm Solution of Model 441

Fig. 3. Plots for the efficiency indexes of the algorithm for two types of calculations
in medium O1 when computing in a computer system with a different number of
processors

indicate that the speed of calculations decreases with an increase in the size of
the computer system. This implies that with a certain size of a computer system,
the speed of calculations will not grow at all or will even reduce. However, this
is valid for the given size of the problem only.

The last two plots indicate that both the efficiency and the relative speed
of calculations decrease with the growth in the size of the computer system. It
should be so for the given problem. For a particular problem, with the growth
of the computer system, the body of data assigned to each processor decreases
proportionally with the size of the system (see Section 3.2). It means that the
number of computational operations decreases when the size of the computer
system grows while the number of exchange operations - between the parallel
branches - remains the same. Here we mean the exchanges for the calculations of
three variables of a medium and one cluster variable (see Section 3.1). It should
be noted here that the plots of the relative acceleration indexes of the algorithm
for calculations in the medium O2 are similar to the plots in Figure 4.

And, finally, Figure 5 shows how the total time of calculations depends on
the size of the computer system used for the media of different size.

Influence of the Size of a Bubble Cluster on the Total Time of Parallel
Computations. In this Section, we present the results of the second variant of
testing the parallel algorithm of the problem under study in the case where the
size of the computer system remains constant and the size of the cluster domain
varies.

442 V.D. Korneev et al.

Fig. 4. Plots for the relative acceleration indexes of the algorithm for two types of
calculations in medium O1 when computing in a computer system with a different
number of processors

For the given problem it is also very important to know how the size of a
bubble cluster influences the total time of parallel computations. The testing
was carried out in the computer system MVS1000 with a constant number of
processors, namely, four, but for clusters of different size. In all the cases, the
medium domain was the same and equal to Nm ∗Km = 1280 ∗ 1280 grid points
along both coordinates. Cluster domains of different size were used, and they
were allocated to the processors differently.

Two sub-variants were considered that differed both in the size of clusters
and in their location at the processors. In each sub-variant, the cluster domains
differed in size only, their location at the processors being the same. The size
of the cluster was determined by the number of points of the cluster domain,
its configuration being unimportant. In the first variant four clusters were con-
sidered, their sizes being K1 = 50 ∗ 103, K2 = 100 ∗ 103, K3 = 150 ∗ 103,
and K4 = 200 ∗ 103 points, respectively. In the second variant there also were
four clusters with KL1 = 100 ∗ 103, KL2 = 200 ∗ 103, KL3 = 300 ∗ 103 and
KL4 = 400 ∗ 103 points. In the first variant, the clusters were located at one
processor, while in the second variant they were located at two processors with a
uniform distribution of points between the processors. In both variants, the time
of computations was compared both with the time of parallel computations in a
homogeneous medium (without a cluster) and with the time of computations in
a homogeneous medium for a sequential algorithm calculated at one processor.

Below there is a plot, which shows the time of parallel computations for both
sub-variants of the tests obtained in the computer system consisting of four pro-
cessors (see Fig. 6). Here nk denotes the time of calculations in a homogeneous

The Parallel Implementation of the Algorithm Solution of Model 443

Fig. 5. Plots for the total computing time of the algorithm for two types of calculations
in media O1 and O2 when computing in a computer system with a different number
of processors

medium without a cluster. ki (i = 1, 2, 3, 4) is the time of calculations in the
medium with the corresponding cluster ki for both sub-variants 1 and 2 (the
notation of clusters is presented above).

As is clear from the plot the size of a bubble cluster essentially affects the total
time of calculating the problem. It should be noted that the lines representing
the two sub-variants on the plot are not very different. It can be explained in
the following way. When a cluster is only located at one processor, the time
needed for calculations at this processor increases. As for the other processors,
for further synchronization both in exchanges and on completion of cycles they
have to wait until the processor with the cluster included finishes its part of the
calculations. If at this very time another processor carries out the same task, the
time delays will be almost the same.

4 Conclusion

This paper presents a new parallel algorithm of the axial-symmetric problem of
the interaction of the plane shock wave with a free bubble system (the toroidal
cluster). The result of the interaction is the formation of a stationary oscillating
shock wave in the liquid. The tests have shown that:

1. the algorithm of the problem is parallelized fairly well in the computer
systems with the distributed memory. When the size of the medium domain is
320 ∗ 3200 and the cluster domain has 20 ∗ 103 points, we attain the acceleration
by 22 fold at the multi-computer with 32 processors;

444 V.D. Korneev et al.

Fig. 6. Plots for the total computing time of the algorithm at four processors for two
sub-variants

2. the characteristics of the parallel algorithm do not deteriorate when the
size of the problem increases;

3. the new results have been obtained when solving a real problem: the struc-
ture of the wave field in a distant zone of the cluster has been analyzed for a
wide range of geometrical variables of a toroidal bubble cluster. The improved
values of the pressure dynamics have also been obtained for large time intervals
when the Mach disk is propagating along the axis;

4. the calculations carried out at the supercomputer are more accurate and
are characterized by a wider range of data to be obtained. A maximum value of
the pressure amplitude in the Mach disk core, obtained at the supercomputer is
approximately 1/3 times as large as the one obtained at a single computer.

It should be noted that each size of the problem in question corresponds to
a certain size of a computer system that is optimal for solving the problem.

It should be noted that each dimension of the problem in question corre-
sponds to a certain size of a computer system that is optimal for solving this
problem.

References

1. V.K. Kedrinskii, Yu.I. Shokin, V.A. Vshivkov, et al.: Docl.Akad. Nauk 381, 773
(2001) [Docl. Phys. 46, 856 (2001)]

2. V.K. Kedrinskii, V.A. Vshivkov, G.I. Dudnikova, itet al.: Joarnal of Experimental
and Theoretical Physics, Vol. 125, No. 6, (2004) 1302-1310

3. Evreinov E.V., Kosarev Yu.G.: High efficiency homogeneous universal computing
systems. Nauka. Novosibirsk (1966)

The Parallel Implementation of the Algorithm Solution of Model 445

4. Mirenkov N.N.: Parallel programming for multimodular computing systems. Radio
i Svyaz. Moscow (1989)

5. Korneev V.D.: A system and methods of programming of multicomputers on
an example of the computer complex PowrXplorer. Russ.Acad.Sci., Sib. Branch.,
Ins.Comp.Math.and Math.Geoph. Preprint, No. 1123. Novosibirsk (1998)

6. Korneev V.D.: Parallel algorithms deciding the task of linear algebra.
Russ.Acad.Sci., Sib. Branch. Ins.Comp.Math. and Math.Geoph., Preprint, No.
1124. Novosibirsk (1998)

7. Korneev V.D.: Parallel programming in MPI. Russ.Acad.Sci. Sib. Branch. Novosi-
birsk (2002)

8. Malyshkin V.E.: Linearization of mass calculations. System Computer Science.
Nauka, No. 1. Novosibirsk (1991) 229-259

9. V.E. Malyshkin, V.A.. Vshivkov, M.A. Kraeva.: About realization of the method
of particles on multiprocessors. Russ.Acad.Sci. Sib. Branch. Ins.Comp.Math.and
Math.Geoph. Preprint, No 1052. Novosibirsk (1995)

10. Snir M., Otto S. W., Huss-Lederman S., Walker D., and Dongarra J.: MPI. The
Complete Reference. MIT Press. Boston (1996)

11. Dongarra J., Otto S. W., Snir M., and Walker D.: An Introduction to the MPI
Standard. Technical report CS-95-274. University of Tennessee, January (1995)

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 446 – 451, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Neural Network Approach for
Parallel Construction of Adaptive Meshes∗

Olga Nechaeva

Supercomputer Software Department,
ICMMG, Siberian Branch,

Russian Academy of Science,
Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia

nechaeva@ssd.sscc.ru

Abstract. The neural network approach for parallel construction of adaptive
mesh on two-dimensional area is proposed. The approach is based on unsuper-
vised learning algorithm for Kohonen’s Self Organizing Map and enables to ob-
tain an adaptive mesh being isomorphic to a rectangular uniform one. A parallel
algorithm for the construction of those meshes based on master-slave program-
ming model is presented. The main feature of the obtained mesh is that their de-
composition into subdomains required for parallel simulation on this mesh is
reduced to partitioning of a rectangular array of nodes. The way of partitioning
may be defined based on parallel simulations on the mesh. The efficiency of the
parallel realization of the proposed algorithm is about 90%.

1 Introduction

Adaptive mesh methods have important applications in a variety of physical and en-
gineering areas such as solid and fluid dynamics, combustion, heat transfer, material
science etc. The use of those meshes enables to improve the accuracy of numerical
solutions without essential increasing in number of nodes [1]. In addition, it is neces-
sary for a mesh construction method to be well parallelized.

In this work, the neural network approach for curvilinear adaptive mesh construc-
tion on arbitrary two-dimensional simulation area is proposed. The approach is based
on the iterative unsupervised learning algorithm for Kohonen’s Self Organizing
Map [2]. The idea is that an originally uniform rectangular mesh is being deformed
and stretched all along the area during the iteration process. Density of the mesh is
proportional to the values of a given nonnegative control function defined on the
simulation area.

The inherent parallelism of the proposed algorithm is a natural base for its parallel
implementation. Efficiency of the proposed parallel algorithm is about 90% that is the
result of the low communication overhead.

The resulting adaptive mesh is isomorphic to the initial uniform one. Due to this
property, mesh decomposition into subdomains required for parallel simulation on

∗ Supported by Presidium of Russian Academy of Sciences, Basic Research Program N17-6

(2004).

 Neural Network Approach for Parallel Construction of Adaptive Meshes 447

this mesh is reduced to partitioning of a rectangular array of mesh nodes wherever the
nodes are located in the simulation area.

It is important that the efficiency of parallelization is almost independent of the
way of partitioning the array of mesh nodes. Therefore, the latter may be distributed
among the processors in accordance with the requirements on parallel implementation
of the problem under simulation, as well as with the properties of the parallel com-
puter system used.

Existing methods of adaptive mesh construction not always provide the above
properties. For example, equidistribution method [3] and Thompson method [4] are
based on the solution of nonlinear partial differential equations, and parallelization of
those methods is comparatively more complicated. Besides, they require an additional
work on the construction of suitable initial mesh.

The paper is organized as follows. Section 2 contains a general idea and an algo-
rithm for the proposed method of adaptive mesh construction. Section 3 presents
parallel realization of the algorithm and time-efficiency diagrams of its implementa-
tion. Section 5 concludes the paper.

2 General Algorithm for Adaptive Mesh Construction

The Self-Organizing Map (SOM) is a neural network used for a topology-preserving
mapping of arbitrary dimensional data onto a low dimensional space, usually a 2D
space [5]. The adaptive mesh construction algorithm is similar to the iterative unsu-
pervised learning process for SOM where neurons correspond to the mesh nodes [6].

Let G be an arbitrary two-dimensional simply connected area. An uniform rectan-
gular mesh of N1 ×N2 nodes is placed inside G arbitrarily as Fig.1(a) shows. The mesh
can be regarded as an initial one for the iterative process of adaptive mesh construc-
tion. Let GN be an array of mesh nodes:

=

211

2

...

.........

...

1

111

NNN

N

N

xx

xx

G , (1)

where each node xij is represented by a pair of real coordinates xij= (x1
ij, x

2
ij),

i = 1, ..., N1, j = 1, ..., N2 in G. The algorithm of mesh construction is as follows.

Algorithm

0. Set initial locations of mesh nodes xij(0), i = 1, …, N1, j =1,…, N2.
1. Perform the following operations at each iteration t.
a) Point generation. Generate a random point y∈G in accordance with some prob-

ability distribution P(G).
b) Winner determination. Calculate Euclid distances between y and all nodes xij(t)

and choose the node xmn(t) which is closest to y, i.e.

)()(txytxy ijmn −≤− (2)

for all i = 1, ..., N1, j = 1, ..., N2. The node xmn(t) is called a winner.

448 O. Nechaeva

c) Node coordinates correction. Adjust the locations of the nodes using the follow-
ing rule:

xij(t +1) = xij(t) + θ (t, i, j)(y – xij(t)) (3)

for all i = 1, ..., N1, j = 1, ..., N2, where θ (t, i, j) ∈ (0, 1] is a learning rate.
2. Repeat step 1 until changes of the node locations become small enough.

At each iteration, mesh nodes move towards the generated point y. The shift length
for each node is defined by the learning rate θ(t, i, j). Quality and speed of mesh
construction depend on the selection of θ(t, i, j). Usually, the learning rate is given
by the following formula [7].

θmn(t, i, j) = δ(t))(2

)()(
2

22

t

njmi

e σ
−+−−

 (4)

The form of θmn(t, i, j) provides conditions according to which winner gets
maximum shift, while other nodes change their locations the less the larger the differ-
ence between indices (i, j) and (m, n). Based on experiments, the functions δ(t) and
σ(t) have been selected as

5

1
)(

t
t =δ ,

5
)(

t

a
t =σ . (5)

Changing a point generation probability in particular regions of G, the required
density of the mesh can be obtained on those regions. Fig.1 shows an example of the
adaptive mesh obtained by the proposed method. Density of the resulting mesh is
proportional to grey tones on the input area G (Fig.1 (b)).

Fig. 1. (a) – input area G and mesh at t = 1; (b) – resulting adaptive mesh at t = 100000

In general, during the mesh construction, nodes change only their location in G ac-
cording to the learning rate (4). Therefore, the structure of node connections remains
the same as that in the initial rectangular uniform mesh wherever the mesh nodes are
located.

 Neural Network Approach for Parallel Construction of Adaptive Meshes 449

3 Parallel Adaptive Mesh Construction

In the sequential version of the adaptive mesh construction algorithm (Sect. 2), the

calculation of distances)(twy ij− in (2) and of node locations xij(t+1) in (3) are the

most time-consuming operations, since they require looking over all mesh nodes.
Fortunately, both operations may be computed independently for all pairs
(i, j)∈N1×N2. So these steps can be parallelized using distribution of the array GN
among the processors.

The proposed parallel algorithm is based on a master-slave programming model,
having one processor P (Master) that controls the other processors P0 , …, Pp-1
(Slaves). Master stores information about the input area, each Slave Pk contains a part

k

NG of the array GN, k = 0, ..., p−1. During the mesh construction, Master generates

random points and controls the global winner calculations whereas Slaves determine
local winners and perform the correction of the node locations.

Parallel Algorithm

0. Master gets information about the input area G, quantities N1 and N2 and pa-
rameters of the learning rate (4). Then it sets the initial location of mesh nodes xij(0)
and distributes the array GN among Slaves.

1. The following operations are performed on each iteration t.
a) Point generation. Master generates a random point y∈G in accordance with

probability distribution P(G) and broadcasts its coordinates to all Slaves.
b) Winner determination. According to (2) each Slave Pk searches for the node

)(txk

mn that is the closest to y in k

NG (a local winner) and sends the indices (m, n)k and

the value of)(txy k

mn− to Master. Master calculates kwin)(minarg txy k

mnk
−= – the

rank of Slave in which a global winner is situated, broadcasts kwin and the indices

winknm),(to all Slaves and then turns to step 1a if a termination condition is false.

c) Node coordinates correction. Each Slave Pk converts the indices
winknm),(in the

local array k

NG into indices (m, n) in the global array GN and then adjusts the locations

of the nodes depending on k.
2. Repeat step 1 until changes of the node locations become small enough.

Fig. 2. Computation time (a) and efficiency (b) for 1000 iterations of the parallel algorithm

450 O. Nechaeva

The parallel program has been implemented using MPI library. Fig.2 shows com-
putation time and efficiency dependence on the number of Slaves. Time has been
measured for 1000 iterations of the algorithm. The array GN size has been 500 by 500.
All measurements have been made in Siberian Supercomputer Center using MVS-
1000 system that consists of 24 processors Alpha, 833MHz, connected to each other
by Myrinet.

The efficiency of parallelization obtained (Fig.2(b)) is greater then 90%. The ex-
planation of this is as follows. First, there are no communications between Slaves,
data transmission occurs only among Master and Slaves. Second, total amount of data
that is transmitted at each iteration is equal to eight numbers per Slave independently
on sizes of adaptive mesh. Third, a random point generation (Master) and correction
of the node locations (Slaves) are performed simultaneously.

Parallel algorithm for different partition of GN (e.g. line or grid of processors) is the
same except for the converting local indices to global. Because of the absence of
communications between Slaves, the efficiency of parallelization is almost independ-
ent on the way of partition of the array GN.

Therefore, the partition of GN may be carried out in accordance with requirements
on parallel implementation of the problem to be simulated on the mesh, as well as
with properties of parallel computer system used. Existing methods of adaptive mesh
construction not always provide this property. For example, parallelization of the
most allied equidistribution method [3] is reduced to parallelization of the alternating
directions method [8]. The latter can be performed with acceptable efficiency using a
line of processors only.

The above feature is important also when using a moving mesh, because the mesh
tuning is required at each iteration of a simulation process on the adaptive mesh. So, it
is necessary to perform the tuning efficiently.

5 Conclusion

In this paper, the application of Kohonen’s Self Organizing Map for parallel construc-
tion of adaptive mesh has been presented. Implemented algorithms show that the
proposed approach allows to obtain adaptive meshes with the following properties:

• The resulting mesh is isomorphic to a rectangular uniform one.
• The efficiency of parallel mesh construction is about 90%.
• Mesh decomposition for parallel simulations is reduced to partitioning of the

rectangular array of the mesh nodes.
• The way of partitioning may be defined based on parallel simulations on the

mesh or a computer system used.

In the future, the proposed method is to be extended for generation of moving
meshes with preservation of the above properties. Quality of the resulting adaptive
meshes will be studied in details. In addition, comparative analysis of the proposed
neural network approach and equidistribution method will be performed.

 Neural Network Approach for Parallel Construction of Adaptive Meshes 451

References

1. Lebedev, A.S., Liseikin, V.D., Khakimzyanov, G.S.: Development of methods for generat-
ing adaptive grids. Vychislitelnye tehnologii, Vol. 7, No. 3 (2002), 29

2. Kohonen, T.K.: Self-organization and associative memory. Springer Verlag, New
York (1989)

3. Khakimzyanov, G.S., Shokin, Yu.I., Barakhnin, V.B., Shokina, N.Y.: Numerical Modelling
of Fluid Flows with Surface Waves. SB RAS, Novosibirsk (2001)

4. Thompson, J.F., Warsi Z.U.A., Mastin C.W.: Numerical grid generation, foundations and
applications. North-Holland, Amsterdam (1985)

5. Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps: An
Introduction. Addison-Wesley, New York (1992)

6. Nechaeva, O. I.: Adaptive curvilinear mesh construction on arbitrary two-dimensional con-
vex area with applying of Kohonen’s Self Organizing Map. Neuroinformatics and its appli-
cations: The XII National Workshop. ICM SB RAS, Krasnoyarsk (2004) 101-102

7. Ghahramani, Z.: Unsupervised Learning. In: Bousquet, O. et al. (eds.): Machine Learning
2003. Lecture Notes in Artificial Intelligence, Vol. 3176. Springer-Verlag, Berlin Heidel-
berg (2004) 72–112

8. Eisemann, P.R.: Alternating Direction Adaptive Grid Generation. AIAA Paper 83-1937,
AIAA 6th Computational Fluid Dynamics Conference, (1983)

Clustering Multiple and Cooperative Instances

of Computational Intensive Software Tools

Dana Petcu1,2, Marcin Paprzycki3,4, and Maria Ganzha5

1 Computer Science Department, Western University of Timişoara, Romania
2 Institute e-Austria, Timişoara, Romania

3 Computer Science Department, Oklahoma State University, USA
4 SWPS, Warsaw, Poland

5 Computer Science Dep., Gizycko Private Higher Educational Institute, Poland
petcu@info.uvt.ro, marcin@cs.okstate.edu, ganzha@pwsz.net

Abstract. In this note a general approach to designing distributed sys-
tems based on coupling existing software tools is presented and illus-
trated by two examples. Utilization of this approach to the development
of intelligent ODE solver is also described.

1 Introduction

Developing from the scratch parallel systems to solve computationally intensive
problems, while efficient, is in most cases rather difficult. Moreover, in initial
stages of development, only few parallel algorithms within such a system are
usually fully implemented and tested, making the resulting system too limited
for practical uses. An alternative approach is to gradually add parallelism to an
existing system consisting of a large number of fully tested sequential algorithms.
In this case parallelism becomes an added value to an existing environment.
Several software tools, based on different requirements and targeted for different
hardware architectures, have been developed in this way. Such development fol-
lowed the same general path leading from single-processor computers, through
tightly-coupled parallel systems, to loosely-coupled distributed environments.

In this note we consider requirements imposed on system architecture that
allow connecting several instances of a given software tool (possibly combined
with single or multiple instances of other tools) in a cluster environment. Archi-
tecture discussed here is designed so that the system can be easily ported to the
grid or to a web-based environment. The proposed architecture was implemented
to couple instances of software tools from symbolic computing and from expert
systems. The efficiency of implementation on a cluster is also reported.

2 Overview of the Proposed Architecture

Coupling several instances of software is an example of transforming software
components into a conglomerate system. One of possible ways of accomplish-
ing this transformation, is by implementing a wrapper that becomes the desired

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 452–456, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Clustering Multiple and Cooperative Instances 453

interface between components, translates external interactions across native in-
terfaces and deals with global syntax of the system. Automatic wrapper gener-
ators for legacy codes that would be able to wrap the entire code or selected
subroutines / modules, are still not available outside of the academia [8]. Here,
we try to identify the requirements that have to be imposed on such a wrapper
for the particular case of coupling software components within cluster environ-
ments.

We make the following assumptions about the software module that is to
be interfaced with the system. (1) It has a user interactive interface, (2) it can
be installed on several machines of a cluster or is accessible by each cluster
machine via an NFS, (3) it has TCP/IP communication facilities, or its source
code is available in a language having TCP/IP communication library, or it has
I/O facilities, and (4) user knows how to split the problem into subproblems.
Specifically, user wants to use the interface of an existing software module to
launch several copies on nodes of a cluster and, in the next step, to send to
them separate subproblems to be solved. Separately, we assume that cooperation
between instances is possible. Finally, other users of the same cluster may want
to use (within the same scenario) the same software module(s) within their
applications. For example, each node of an 8-processor cluster has a copy of
Maple running and various users may utilize groups of 1 through 8 kernels.

Designing cluster wrappers for software tools satisfying our assumptions can
be done by combining two pieces of software (Figure 1). The first one is a set
of simple commands, functions, procedures or methods, written in a language
of that software tool; designed as user interface for controlling remote instances,
sending and receiving information to and from them (parallel API – PAPI). The
second one is a set of commands, functions, procedures or methods written in a
language of the cluster middleware, catching the user commands and executing
them (communication middleware, CMW). The PAPI is the cluster wrapper

Fig. 1. Wrapping the user code (UPC) to clone it in a cluster environment: two main
components, the PAPI depending on the UPC and the general CMW

component depending on the user provided software (denoted UPC), while the
CMW is more general, it must be useable by several PAPIs. On a particular
node of the cluster where an instance of the software tool is running, the PAPI
set is loaded and any specific call to it leads to communication with the CMW

454 D. Petcu, M. Paprzycki, and M. Ganzha

Table 1. The commands send by a PAPI to its twin CMW

Command meaning

spawn n CMW launches in the cluster environment n copies of the UPC
send d t ”c” CMW forwards to the dth copy of the UPC the text c to be interpreted

by the UPC; the label t is used to match sends with receives;
receive s t CMW and UPC wait until a message from the instance s is received; then

forward it to the UPC which has requested the receive
probe s t CMW tests if a message has arrived from s and responds ’true’ or ’false’
kill s Shutdown the UPC and the CMW from the node hosting the instance of

s
exit All remote UPCs and their twin CMWs are stopped
proc no CMW replace it with a no. representing the no. of current UPC copies
proc id CMW replace it with the identifier of the UPC copy

component activated on the same machine (by the classical TCP/IP or the I/O
operations). A minimal language must be specified for such communication. For
example, a minimal set of such messages can be as presented in Table 1. In
this case, while user loads interactively the PAPI set within its UPC, the UPCs
launched remotely also load the PAPI set, recognize their identifier in the system
and constantly probe requests their twin CMW, i.e. if they do not work they
expect to receive information from the other instances. Let us now illustrate
most important details of implementation of the proposed architecture.

3 Implementation

We introduce two examples: (1) coupling several instances of Maple; (2) coupling
several instances of Jess. Let us note that our main goal is to reduce the solution
time when the two software tools are used to solve complex problems.

Coupling Several Instances of Maple. There exist a large number of efforts
to extend Maple to parallel and distributed environments and a comprehensive
review of the state-of-the-art can be found in [9]. Within last 5 years we have
implemented two variants of cluster (and grid) oriented Maple: PVMaple and
Maple2g.

In PVMaple [4], Maple was wrapped into an external software that manages
execution of tasks. The CMW, a special binary, written in C and using PVM,
is responsible for the message exchanges between Maple processes, coordinates
interaction between Maple kernels via PVM daemons, and schedules tasks among
nodes. The PAPI, a Maple library, consists of a set of parallel programming
commands available within Maple itself and supports connections with the CMW
(Table 2). Communication between Maple and CMW is achieved via text files.

The more recent wrapper – Maple2g [6] - also consists of two parts, the
PAPI, the computer algebra dependent one – m2g, a Maple library of functions
allowing Maple users to interact with the grid or cluster middleware – and the
CMW, the grid-dependent one – MGProxy, a package of Java classes acting as

Clustering Multiple and Cooperative Instances 455

Table 2. PAPI to CMW communication in PVMaple, Maple2g, and Parallel Jess

PAPI pvm lib for PVMaple m2g library for Maple2g ParJess lib

spawn n spawn(IP,proc no) m2g maple(n) (kernels n)
send d t ”c” t:=send(d,c) m2g send(d, t, c) (send d t s)
receive s t receive(t, s) m2g recv(s, t) (recv s t)
probe s t - m2g prob(s, t) (prob n t)
kill s - - (kill s)
exit exit m2g exit() (exit)
proc no tasks m2g size -
proc id TaskId m2g rank ?*p*
- ProcId, MachId, m2g connect(), m2g getservice(c, l) (connection)

setttime(), time(), m2g jobsubmit(t, c), m2g jobstop(t)
version() m2g status(t), m2g MGProxy start(),

m2g results(t), m2g MGProxy end()

an interface between m2g and the grid or cluster environment. MpiJava was
selected as the message-passing interface for the CMW, due to ist compatibility
with the Globus Toolkit. Communication between Maple and the MGProxy is
achieved using socket library available in Maple. The most important features of
Maple2g are summarized in Table 2. Maple2g was tested on a cluster of 9 PCs
connected with a fast Myrinet switch (2Gbs) on which Maple7 was installed. To
indicate an order of the efficiency, for 2 integers of 10 millions multiplied with
Karatsuba algorithm (the implicit procedure in Maple7): 88% for 3 processors,
71% for 9 processors. Subsequent examples in the grid case can be found in [6].
All experiments indicate reasonable scalability of both PVMMaple and Maple2g
(scalability depends primarily on network throughput).

Coupling Several Instances of Jess. Standard benchmarks [2], show that
current rule-based systems, running on modern hardware, may need hours to
reach an answer when the number of rules is of order of thousand. Therefore,
parallel approaches are needed for real applications and first parallel implemen-
tations were already available in early 1990s [1]. There are several approaches to
parallelization [10]: (a) parallel matching leads to a limited speedup caused by
the sequential execution of rules; (b) multiple rule firing approach parallelizes the
match phase and the act phase by firing multiple rules in parallel, but involves
extra cost due to synchronization; (c) special techniques like compatible rules
or analysis of data dependency graphs, can improve efficiency of parallelization;
(d) task-level parallelism, used here, based on the decomposition of the problem
into a hierarchy of tasks is expected to lead to best results.

Jess, a rule-based programming environment written in Java was chosen be-
cause of its active development and support, and because there is no parallel
version of Jess. The proposed architecture, recently reported in [7], also follows
the wrapper-based design presented in Section 2.

The CMW in Parallel Jess consists of two parts: the Connector and the
Messenger. The Connector is written in Java and uses standard ServerSockets

456 D. Petcu, M. Paprzycki, and M. Ganzha

methods of TCP/IP communication. Jess instance acts as a client and contacts
(via socket) its Connector, the server. Each Messenger is associated with one local
Connector and its purpose is (1) to execute commands received by the Connector,
and (2) to communicate with Messengers associated with other instances of Jess.
Messenger is written in Java and JPVM. Set of new commands added to Jess
(the PAPI) is presented in Table 2.

In order to test Parallel Jess efficiency, we applied it to the Miss Manner
problem [2] on the same cluster computer, obtaining an efficiency of 95% for 2
processors, and 45% for 8 processors. Several other examples can be found in [7]
and all of then indicate reasonable efficiency of Parallel Jess.

Future Research Direction. The above described components will be used to
develop a distributed cluster-based intelligent ODE solving environment. Here,
the problem will be described in a user friendly environment of the latest version
of the ODE numerical expert, EpODE [3]. The problem properties (stiffness,
decomposability, etc) will be then analyzed using a Maple kernel residing in
the cluster environment (e.g. eigenvalues of the linear part), or using EpODE
facilities (e.g. Jacobian matrix). Decisions which analysis methods to apply will
be made by a rule-based algorithm rewritten in Parallel Jess. Furthermore, if
the problem is large, a Maple2g multiprocessor approach will be used (see also
[5]).

References

1. Amaral J.N.: A Parallel architecture for serializable production systems, Ph.D.
Thesis, University of Texas, Austin, 1994.

2. OPS5 Benchmark Suite, available at http://www.pst.com/benchcr2.htm, 2003.
3. Petcu D., Dragan M.: Designing an ODE solving environment, LNCSE 10, Procs.

SciTools, eds. H.P. Langtangen et al(2000), 319-338.
4. Petcu D.: PVMaple – A distributed approach to cooperative work of Maple pro-

cesses. LNCS 1908, eds. J.Dongarra et al., (2000), 216–224
5. Petcu D.: Numerical Solution of ODEs with Distributed Maple, LNCS 1988, Procs.

NAA, eds. Lubin Vulkov et al, 666–674, 2001.
6. Petcu D., Dubu D., Paprzycki M.: Extending Maple to the Grid: Design and im-

plementation, in Procs. ISPDC’04, J.Morrison et al. eds., IEEE CS Press, 209-216.
7. Petcu D., Parallel Jess, Proceedings for the ISPDC 2005 Conference, to appear.
8. Solomon A., Struble C.A.: JavaMath – an API for internet accessible mathematical

services, Procs. 5th Asian Symposium on Computer Mathematics, (2001).
9. Schreiner W., Mittermaier C., Bosa K.: Distributed Maple – parallel computer

algebra in networked environments, J. Symb. Comp. 35:3, (2003), 305–347.
10. S. Wu, D. Miranker, J. Browne: Towards semantic-based exploration of parallelism

in production systems, TR-94-23, 1994.

A Multigrid Parallel Program for

Protoplanetary Disc Simulation�

Alexey V. Snytnikov and Vitaly A. Vshivkov

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Lavrientieva av. 6, Novosibirsk, 630090, Russia

{snytav, vsh}@ssd.sscc.ru

Abstract. In this paper we present a program for simulation of the
two-component protoplanetary disc evolution. The model includes gas
dynamics and collisionless solid body dynamics. Multigrid method for
solution of Poisson equation in cylindrical coordinate system is described.
An essentially parallel Poisson equation solver is constructed by means of
applying Fast Fourier Transform along the angular direction. Processor
workload rearrangement is performed in order to increase the speedup.
The results of computational experiments are given to demonstrate the
physical validity of the program.

1 Introduction

Protoplanetary discs are widely studied in recent time (e.g. [1], [5], [8]). The prob-
lem of organic matter genesis in the Solar System is a matter of special interest.
In [12] the protoplanetary disc is considered as a catalytic chemical reactor for
synthesis of primary organic compounds. The mean density and temperature in
protoplanetary disc are very small. But the chemical synthesis requires high val-
ues of gas temperature, pressure and also density of both gas and dust particles.
Due to this reason it is extremely important to find out how do these high values
of temperature, pressure and density appear. The solitons that appeared in our
computational experiments are one of the possible answers to this question.

The strong mutual influence of gas and dust components was found out
in our computational experiments. Namely, the whole disc becomes unstable
due to dynamic heating of the very small dust component. Thus the presented
program is capable to achieve more accurate results than in one-component
(purely gaseous) protoplanetary disc analysis (for example, [10]). The physical
consideration of these phenomena is out of the present paper. Here we just want
to say that our program produces results that are interesting from the physical
point of view.
� The present work was supported by SB RAS integration project number 148, Sub-

program 2 of RAS Presidium Program ”Biosphere genesis and evolution”, and
RFBR (grant 05-01-00665), Dutch-Russian NWO-GRID project, contract NWO-
RFBS 047.016.007 and Dutch-Russian NWO-Plasma project, contract NWO-RFBS
047.016.018.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 457–467, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

458 A.V. Snytnikov and V.A. Vshivkov

Protoplanetary disc simulation involves solution of the complex system of
equations: Vlasov-Liouville kinetic equation, Poisson equation and gas dynam-
ics equations. Vlasov-Liouville equation is solved by the Particle-in-Cell method.
The parallelisation of the method is very simple and leads to almost linear
speedup for kinetic equation solution [6]. Gas dynamics equatons are solved very
rapidly (compared to Poisson and Vlasov-Liouville equations) by The Fluids-in-
Cells (FlIC) method [2]. Due to this reason the FlIC method parallelisation is
not discussed in the present paper. The implemented methods for solution of
Vlasov equation and gas dynamics equations are described in more detail in
[13]. Parallelisation scheme is presented in [9].

Poisson equation solution takes the most time in protoplanetary disc simula-
tion. The survey of Poisson equation solvers could be found, for example, in [7].
The cylindrical geometry employed in our program together with the necessity to
compute on very fine grids give special requirements for Poisson equation solver.
The widely used 3D FFT method is limited to rectangular cartesian grids. The
fastest techniques based on circular reduction (e.g. FACR, DCR) could not be
used on fine grids due to intrinsic numerical instability. Poisson equation must
be solved at every timestep of the computational experiment. Thus the itera-
tional methods are worth using since they are able to take the potential from
the previous timestep into account.

In [11] the Poisson equation solver is described that is a combination of
FFT along the angular coordinate and Block Succesive Over-Relaxation (BSOR)
method. The solver provides rapid potential evaluation. Unfortunately, the
straightforward parallelisation of this solver results in rather a small speedup.
The reason is that the number of BSOR iterations differ dramatically for dif-
ferent potential harmonics. In the present paper the solver is presented that
employs multigrid method for the harmonics with greatest number of iterations
and BSOR method for all the others. Thus a better speedup is achieved. All the
computations were carried out on the MVS-1000M multicomputer in Siberian
Supercomputer Centre, Novosibirsk and Joint Supercomputer Centre, Moscow.

2 Source Equations

The dynamics of the dust component of protoplanetary disc is described by
the Vlasov-Liouville kinetic equation. In the following text dust particles will
be called simply particles. To consider the motion of the gas component the
equations of gas dynamics are employed. The gravitational field is determined
by Poisson equation.

If we employ the collisionless approximation of the mean self-consistent field,
then Vlasov-Liouville kinetic equation is written in the following form

∂f

∂t
+ v∇f + a

∂f

∂v
= 0,

where f(t, r, v) is the time-dependent one-particle distribution function along
coordinates and velocities, a = −∇Φ+ F fr is the acceleration of unit mass par-

A Multigrid Parallel Program for Protoplanetary Disc Simulation 459

ticle, F fr is the friction force between gas and dust components of the medium.
Gravitational potential Φ could be divided into two parts:

Φ = Φ1 + Φ2,

where Φ1 presents either the potential of immobile central mass (galactic black
hole or protostar) or the potential of a rigid system which is out of disc plane
(galactic halo or molecular cloud). The second part of potential Φ2 is determined
by the additive distribution of the moving particles and gas. Φ2 satisfies Poisson
equation:

ΔΦ2 = 4πGΣρ.

In the case of infinitesimally thin disc the bulk density of the mobile media
Σρ = ρpart + ρgas is equal to zero (ρpart is the particle density, ρgas is the gas
density). There is a shear of the normal derivative of potential at the disc surface.
This shear gives a boundary condition for the normal derivative of potential Φ2:

∂Φ2

∂z
= 2πGσ.

here σ is the surface density.
Gas dynamics equations are used in the common form. The implementation of

the Fluids-in-Cells method for the solution of gas dynamics equations is discussed
in [13].

In the full description of the protoplanetary disc these equations are com-
plemented with the equations for chemical reactions in gas component and the
equations for simulation of dust particles coagulation.

Since the real physical quantities related to protoplanetary discs are very
large, sizeless variables must be used to avoid the loss of precision in compu-
tations. The following quantities were chosen as basic characteristic parameters
for transition to sizeless variables:

— distance from the Sun to the Earth R0 = 1.5 · 1011 m;
— mass of the Sun M� = 2 · 1030 kg;
— gravitational constant G = 6.672 · 10−11 ·m2/kg2.

Corresponding characteristic values of the particle velocity (V0), time (t0),
potential (Φ0) and surface density (σ0) are written as

V0 =
√

GM�
R0

= 30 km/s,

t0 =
R0

V0
= 5 · 106 s = 1/6 year,

Φ0 = V 2
0 =

GM�
R0

,

460 A.V. Snytnikov and V.A. Vshivkov

σ0 =
M�
R2

0

.

In the following text all the parameters are given in sizeless units.
Initial distribution of the particle and gas density is set according to the

model of solid body rotation [13].

3 Multigrid Poisson Equation Solver

In this section the essentially parallel Poisson equation solver is constructed.
The first step is the Fast Fourier Transform along angular coordinate. It results
in a set of linear algebraic equation systems. Each system of linear algebraic
equations describes one harmonic of the potential:

1
h2

rri−1/2

[
ri−1Hi−3/2,l−1/2(m) + riHi+1/2,l−1/2(m)

]
+

1
h2

z

[
Hi−1/2,l−3/2(m) + Hi−1/2,l+1/2(m)

]
− 2

h2
ϕr2

i−1/2

[
1 + 2 sin2 πm

Kmax

]
Hi−1/2,l−1/2(m)

= 4πRi−1/2,l−1/2(m) cos
2π

Kmax
km,

m = 1, ..., Kmax.

where m is the number of harmonic or angular wavenumber, Kmax is equal
to the number of grid points along the angular coordinate. These systems are
completely independent from each other, thus they could be solved concurrently
with no interprocessor communications.

The 2D linear algebraic equation system is solved by Block Successive Over-
Relaxation method (BSOR). Figure 1 shows that the most time is spent on
solving the system for the first harmonic (m = 0). Diagonal domination in the
linear system matrix is weak for m = 0 and the iterational process converges
very slowly.

Multigrid method is employed to solve the system for the first harmonic.
The general description of the multigrid method is given for example, in [4]. The
method itself is well-known, but there is no multigrid scheme which is optimal
in all the cases. Due to this reason the implementation of multigrid method was
built that takes the cylindrical geometry into account.

The multigrid method is implemented in the form of the Full MultiGrid
(FMG, [15]) loop. This scheme contains of the following parts: smoothing opera-
tor S, restriction operator R and prolongation operator P . Smoothing operator
is used to suppress the high-frequency error. R restricts the fine-grid values onto
the coarse grid. The operator P does the opposite: it interpolates the solution

A Multigrid Parallel Program for Protoplanetary Disc Simulation 461

Fig. 1. Number of BSOR iterations depending on wavenumber

from coarse grid to fine grid. Finally, there is a procedure that solves the linear
equation system on the coarsest grid level. The main difficulty is the following:
common restriction, prolongation and smoothing operators result in slow con-
vergence in the case of cylindrical geometry. In the present work the special form
of these operators was designed. Also their combination was chosen that gives
fast convergence of the multigrid method.

The number of grid nodes along each coordinate line is equal to Nl = 2l − 1
for the number l grid. The size of the source (finest) grid is N0 = 2L − 1.

For smoothing operator BSOR method was chosen. Chan et al. [3] construct
the interpolation operator by solving local PDE. In our case it means that Pois-
son equation should be satisfied in the neighbourhood of the fine-grid node with
the given values in the nodes of the coarse grid. Thus the interpolation operator
has the following form:

H l−1
i−1/2,k =

1
4

1
ri−1/2

[
riH

l
i+1/2,k + ri−1H

l
i−3/2,k

]
+

+
1
4

[
H l

i−1/2,k−1 + H l
i−1/2,k+1

]
,

i = 1, ..., Imax k = 1, ..., Kmax l = 1..., L.

here l is the number of the grid. The values in the coarse grid nodes that belong
also to the fine grid are transmitted with no changes.

Both operators R and P are just matrices. In the present work R is a trans-
pose of P: R = PT .

Multigrid method (MG) works faster than BSOR as table 1 shows. The
number of BSOR iterations the smoothing operator S performs depend on the
grid size. They are usually called nested iterations. Small number of nested
iterations makes the process unstable, large number makes it too slow.

462 A.V. Snytnikov and V.A. Vshivkov

Table 1. Computation time of MG method compared to BSOR

Grid size BSOR time MG time Number of
(in seconds) (in seconds) nested

iterations

63 × 63 0.13 1.08 5

127 × 127 2.27 1.3 25

255 × 255 49.89 20.06 120

511 × 511 1119.8 204.33 500

Fig. 2. Speedup. Linear equation system for the first harmonic is solved with the MG
method on the detached processor, all the other harmonics with BSOR (circles). All
the harmonics are evaluated with the BSOR method, uniform workload distribution
(squares)

The computation time for the first harmonic of potential on the large grid
is reduced by the factor 5.4. Thus the processor workload becomes more
uniform.

Finally the first harmonic is assigned to a detached processor. During the
potential evaluation stage the workload is the following for 512 harmonics and 8
processors. Processor number 0 has only the first harmonic, processor number 1
has the harmonics from the 2nd to 74 and so on, 73 harmonics for each processor.
This enables to improve the speedup, as it is shown in figure 2. The computation
is done for the grid size 511 × 512 × 511, 100 million particles. The time of
real computation on 8, 16, 32, 64 processors is compared to the virtual single
processor computation. Actually the problem of such a large size does not fit
into less than 8 processors.

A Multigrid Parallel Program for Protoplanetary Disc Simulation 463

4 Simulation Results

4.1 Disc Instability Due to Dust Component Heating

The goal of the first computational experiment was the demonstration of the
mutual influence of gas and dust components of the protoplanetary disc. The
dynamic temperature of the dust component varied from 0.01 to 0.1, the other
parameters of the disc are shown in table 2.

Table 2. Disc parameters for computational experiment 1

Dust component mass 0.01

Gas component mass 1.0

Central body mass 1.0

Dust disc radius 2.0

Gas disc radius 2.0

Gas pressure in the disc centre 0.001

Timestep 0.002

Number of timesteps 4000

Grid size 120 × 128 × 100

Number of particles 107

Toomre [14] criterion states the the one-component disc (dust component
only) becomes more stable with the increase of the dynamic temperature. Figure
3 shows gas density distribution in the disc. White colour means the maximal
density, black means zero density, the scale is logarithmical. Three cases are
given: stable disc (Q = 0.01), marginal disc (Q = 0.05) and unstable disc (Q =
0.1). For each case the value of dynamic temperature Q is given.

Thus with increase of the dynamic temperature of the dust component the
whole disc looses axial symmetry and becomes unstable. The most interesting
fact is that the dust component, having very small mass (about 1 % of the whole
disc mass), has a strong influence on the stability of the disc. Let us remind once
more that this situation is impossible for a one-component disc.

This effect means that dust and gas components of the protoplanetary disc
could not be considered separately. As it is shown in this section, the presented
program suits for studying mutual influence of gas and dust components.

4.2 Soliton Interaction

In the second computational experiment the interaction of solitons (lone density
waves) occurred, fig. 4. The parameters of the disc are shown in table 3.

First the density wave arises (fig. 4, A), then it approaches the standing
soliton (fig. 4, B). After absorption of the wave the soliton deviates from the
initial position (fig. 4, C) but then returns back (fig. 4, D). It should be noticed
that such a phenomenon is impossible for clumps of dust. Thus figure 4 proves
wave nature of the structures observed in our computational experiments - the
solitons.

464 A.V. Snytnikov and V.A. Vshivkov

Q = 0.01

Q = 0.05

Q = 0.1

Fig. 3. Gas density distribution. The instability arises with the increase of the dynamic
temperature of particles

A Multigrid Parallel Program for Protoplanetary Disc Simulation 465

Table 3. Disc parameters for computational experiment 2

Dust component mass 1.0

Gas component mass 1.0

Central body mass 2.0

Dust disc radius 1.0

Gas disc radius 1.0

Gas pressure in the disc centre 0.001

Timestep 0.0005

Number of timesteps 16000

Grid size 300 × 256 × 128

Number of particles 5 × 107

Fig. 4. Absorption of a density wave by the soliton. The size of the exposed domain is
1.0× 1.0, the centre of it is in (-0.5, -0.5). Figure A shows particle density distribution
for the moment of time 4.76, figure B for the moment of time 4.96, figure C for 5.04
and figure D for 5.2

Moreover, white colour of the soliton kernel means that the density of the
dust particles in that place is much higher (by 6 orders of magnitude) then in
surrounding disc. There are also high values of gas density and pressure. These
conditions probably make the catalytic synthesis of primary organic compounds
possible.

466 A.V. Snytnikov and V.A. Vshivkov

5 Conclusion

The use of multigrid method and processor workload rearrangement enable to
increase the speedup twice compared to uniform processor workload. The results
of computational experiments show, in the first place, strong mutual influence of
the gas and dust components of the disc, and second, soliton formation and inter-
action. Both effects are important for simulation of primary organic compound
synthesis in protoplanetary disc.

Acknowledgements. The authors want to thank Valery N.Snytnikov and Vic-
tor E.Malyshkin for their help and interest to our work.

References

1. Barranco J., Marcus P.: Vortices in Protoplanetary Disks and the Formation of
Planetesimals. In DPS 2001 meeting BAAS. (2001). 33.

2. Belotserkovsky O.M., Davydov Yu.M.: Fluids-in-cells method in gas dynamics.
Moscow, Nauka Publishers. (1982). - in Russian.

3. Chan T.F., Wan W.L.: Robust multigrid methods for nonsmooth coefficient ellip-
tic linear systems. Journal of Computational and Applied Mathematics. Vol. 123.
(2000). 323-352.

4. Demmel J.W.: Applied Numerical Linear Algebra. SIAM. (1997).
5. De la Fuente Marcos C., Barge P.: The effect of long-lived vortical circulation on

the dynamics of dust particles in the mid-plane of a protoplanetary disc. MNRAS,
323. 2001b. 601

6. Grigoryev Yu.N., Vshivkov V.A., Fedoruk M.P.: Numerical ”Particle-in-Cell”
Methods. Theory and Applications. VSP. (2002).

7. Hockney, R.W. and Eastwood, J.W.: Computer Simulation Using Particles. IOP
Publishing, Bristol. (1988).

8. Kornet K., Stepinski T., Rozyczka M.: Diversity of planetary systems from evo-
lution of solids in protoplanetary disks. Astronomy and Astrophysics. Vol. 378.
(2001). 180.

9. Kuksheva E.A., Malyshkin V.E., Nikitin S.A., Snytnikov A.V., Snytnikov V.N.,
Vshivkov V.A.: Numerical Simulation of Self-Organisation in Gravitationally Un-
stable Media on Supercomputers. PaCT-2003 proceedings. LNCS 2763. (2003).
pp.354-368.

10. Pickett B.K., Durisen R.H., Davis G.A.: The Dynamic Stability of Rotating Pro-
tostars and Protostellar Disks. I. The Effects of Angular Momentum Distribution.
Astrophysical Journal. 458. (1996). 714-738.

11. Snytnikov A.V.. A Parallel Program for Simulation of Disc-Shaped Self-Gravitating
Systems. Bull.Nov.Comp.Center, Comp.Science. Vol. 19. (2003). 73-81.

12. Snytnikov V.N., Dudnikova G.I., Gleaves J.T., Nikitin S.A., Parmon V.N., Stoy-
anovsky V.O., Vshivkov V.A., Yablonsky G.S.,Zakharenko V.S.: Space chemical
reactor of protoplanetary disk. Adv. Space Res. Vol. 30, No. 6. (2002). 1461-1467.

A Multigrid Parallel Program for Protoplanetary Disc Simulation 467

13. Snytnikov V.N., Vshivkov V.A., E.V.Neupokoev, Nikitin S.A., Parmon V.N., Snyt-
nikov A.V.: Three-Dimensional Numerical Simulation of a Nonstationary Gravitat-
ing N-Body System with Gas. Astronomy Letters, vol. 30, no. 2. (2004). 124-138.

14. Toomre A.: On the gravitational stabilty of a disc of stars. Astrophys. J. Vol. 139.
(1964). 1217.

15. Wesseling P.: An Introduction to Multigrid Methods. John Wiley & Sons. (1992).

Author Index

Abramov, Sergey 303
Adamovich, Alexei 303
Akon, Mohammad Mursalin 367
Alfonsi, Giancarlo 381
Aliev, Marat 413
Andreeva, M.V. 16

Bădică, Costin 393
Bair, Thomas B. 355
Baldo, Lucas 403
Bandini, Stefania 114
Bandman, Olga 99
Bashkin, Vladimir A. 27
Bodei, Chiara 1
Braun, Terry A. 355
Buchholtz, Mikael 1

Casavant, Thomas L. 355
Castro, Márcio Bastos 403
Chang, Yu-Weir 346
Chen, Chun-Hsiang 278
Chen, Shih-Chang 216
Chicheva, Marina 413
Chizhov, Vladimir 420
Chong, Kil To 151, 193
Curti, Michele 1

Degano, Pierpaolo 1
Dubtsov, R.S. 42

Feng, Yong 226
Fernandes, Luiz Gustavo 403
Ferreira, João Fernando 239
Fougere, D. 313

Ganzha, Maria 393, 452
Gorodnichev, M. 313
Goswami, Dhrubajyoti 367

Halbach, Mathias 129
Hoffmann, Rolf 129
Honkanen, Risto T. 141
Hsu, Ching-Hsien 216, 278

Inyukhin, Alexander 303

Jeitner, Jürgen 331
Jia, Rui-yong 226
Jun, Yong-Kee 321

Kalinov, Alexey 420
Karl, Wolfgang 331
Kedrinskii, V.K. 433
Kim, Hyongsuk 151, 193
Kim, Hyunjung 151
Kim, Young-Joo 321
Korneev, V.D. 433

Lan, Chao-Yang 216
Lazareva, G.G. 433
Ledovskikh, Ilya 420
Levchenko, Zakhar 420
Li, Hon Fung 367
Li, Kuan-Ching 216, 278
Lin, Chun-Yuan 346
Lomazova, Irina A. 27
Ludwig, Thomas 288

Malyshkin, N. 313
Malyshkin, V. 313
Manzoni, Sara 114
Merkulov, A. 313
Moskovsky, Alexander 303

Nechaeva, Olga 446
Nepomniaschaya, Anna 159
Nielson, Flemming 1, 79
Nielson, Hanne Riis 1, 79
Novopashin, Alexei P. 206

Ok, MinHwan 249
Oparin, Gennady A. 206
Ott, Michael 288

Paprzycki, Marcin 393, 452
Park, Mi-Young 321
Park, Myong-soon 249
Park, So-Hee 321
Petcu, Dana 452
P̂ırvănescu, Amalia 393
Posypkin, Mikhail 420

470 Author Index

Priami, Corrado 1
Primavera, Leonardo 381

Raeder, Mateus 403
Raipin Parvedy, Philippe 49
Raynal, Michel 49, 59
Robinson, John P. 355
Roganov, Vladimir 303
Roux, B. 313
Roy, Matthieu 59
Rusin, Evgeny V. 174

Schamberger, Stefan 263
Scheetz, Todd E. 355
Shevchuk, Elena 303
Shevchuk, Yuri 303
Snytnikov, Alexey V. 457
Sobral, João Lúıs 239
Sokolov, Valery A. 74
Son, Hongrak 151
Stamatakis, Alexandros 288

Tang, Chuan Yi 346
Tao, Jie 331

Timofeev, Eugeny A. 74
Tolstrup, Terkel K. 79
Travers, Corentin 49
Trinitis, Carsten 331
Tsaregorodtsev, Victor G. 186

Velho, Pedro 403
Virbitskaite, I.B. 16
Vizzari, Giuseppe 114
Vodomerov, Alexander 303
Vshivkov, Vitaly A. 433, 457

Walters, Jesse D. 355
Weidendorfer, Josef 331

Yang, Chao-Tung 216, 278
Yang, YaoHua 346
Yershov, Alexey 413
Yoo, Sung-goo 193
Yu, Kun-Ming 346

Zhang, Xiao 226
Zhang, Yan-yuan 226
Zhou, Jiayi 346

	Frontmatter
	On Evaluating the Performance of Security Protocols
	Timed Equivalences for Timed Event Structures
	Similarity of Generalized Resources in Petri Nets
	Real-Time Event Structures and Scott Domains
	Early-Stopping {\itshape k}-Set Agreement in Synchronous Systems Prone to Any Number of Process Crashes
	Allowing Atomic Objects to Coexist with Sequentially Consistent Objects
	An Approach to the Implementation of the Dynamical Priorities Method
	Information Flow Analysis for VHDL
	Composing Fine-Grained Parallel Algorithms for Spatial Dynamics Simulation
	Situated Agents Interaction: Coordinated Change of State for Adjacent Agents
	Optimal Behavior of a Moving Creature in the Cellular Automata Model
	Systolic Routing in an Optical Butterfly
	Feasibility of the Circularly Connected Analog CNN Cell Array-Based Viterbi Decoder
	Associative Parallel Algorithm for Dynamic Reconstruction of a Minimum Spanning Tree After Deletion of a Vertex
	The Use of Vertical Processing Principle in Parallel Image Processing on Conventional MIMD Computers
	Parallel Implementation of Back-Propagation Neural Network Software on SMP Computers
	Development of Predictive TFRC with Neural Network
	Planning of Parallel Abstract Programs as Boolean Satisfiability
	Efficient Communication Scheduling Methods for Irregular Data Redistribution in Parallelizing Compilers
	Online Virtual Disk Migration with Performance Guarantees in a Shared Storage Environment
	ParC\#: Parallel Computing with C\# in .Net
	Minimizing Hotspot Delay by Fully Utilizing the Link Bandwidth on 2D Mesh with Virtual Cut-Through Switching
	A Shape Optimizing Load Distribution Heuristic for Parallel Adaptive FEM Computations
	Performance Analysis of Applying Replica Selection Technology for Data Grid Environments
	RAxML-OMP: An Efficient Program for Phylogenetic Inference on SMPs
	OpenTS: An Outline of Dynamic Parallelization Approach
	NumGrid Middleware: MPI Support for Computational Grids
	A Practical Tool for Detecting Races in OpenMP Programs
	Comprehensive Cache Inspection with Hardware Monitors
	A Fast Technique for Constructing Evolutionary Tree with the Application of Compact Sets
	XenoCluster: A Grid Computing Approach to Finding Ancient Evolutionary Genetic Anomalies
	A Model for Designing and Implementing Parallel Applications Using Extensible Architectural Skeletons
	A Parallel Computational Code for the Education of Coherent Structures of Turbulence in Fluid Dynamics
	Experimenting with a Multi-agent E-Commerce Environment
	A Parallel Version for the Propagation Algorithm
	Parallelization Techniques for Multidimensional Hypercomplex Discrete Fourier Transform
	An Implementation of the Matrix Multiplication Algorithm SUMMA in mpF
	The Parallel Implementation of the Algorithm Solution of Model for Two-Phase Cluster in Liquids
	Neural Network Approach for Parallel Construction of Adaptive Meshes
	Clustering Multiple and Cooperative Instances of Computational Intensive Software Tools
	A Multigrid Parallel Program for Protoplanetary Disc Simulation
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

